Kinetic modelling of methanol synthesis over commercial catalysts: A critical assessment

动能 外推法 甲醇 热力学 化学 动力学方案 合成气 航程(航空) 催化作用 材料科学 工艺工程 有机化学 物理 数学 工程类 量子力学 数学分析 复合材料
作者
F. Nestler,Andrea Schütze,Mohamed Ouda,M. J. Hadrich,Achim Schaadt,Siegfried Bajohr,Thomas Kolb
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:394: 124881-124881 被引量:56
标识
DOI:10.1016/j.cej.2020.124881
摘要

Kinetic modelling of methanol synthesis over commercial catalysts is of high importance for reactor and process design. Literature kinetic models were implemented and systematically discussed against a newly developed kinetic model based on published kinetic data. Deviations in the sensitivities of the kinetic models were explained by means of the experimentally covered parameter range. The simulation results proved that an extrapolation of the working range of the kinetic models can lead towards significant simulation errors especially with regard to pressure, stoichiometric number and CO/CO2-ratio considerably limiting the applicability of kinetic models frequently applied in scientific literature. Therefore, the validated data range for kinetic models should be considered when detailed reactor simulations are carried out. With regard to Power-to-Methanol processes special attention should be drawn towards the rate limiting effect of water at high CO2 contents in the syngas. Moreover, it was shown that kinetic models based on data measured over outdated catalysts show significantly lower activity than those derived from state-of-the-art catalysts and should therefore be applied with caution for reactor and process simulations. The plausible behavior of the herein proposed kinetic model was demonstrated by a systematic comparison towards established kinetic approaches within both, an ideal kinetic reactor and an industrial steam cooled tubular reactor. Relative to the state-of-the-art kinetic models it was proven that the herein proposed kinetic model can be applied over the complete industrially relevant working range for methanol synthesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccoo完成签到,获得积分10
刚刚
3秒前
4秒前
lin发布了新的文献求助10
5秒前
6秒前
脑洞疼应助唠叨的月光采纳,获得10
6秒前
识途发布了新的文献求助10
7秒前
lagou完成签到 ,获得积分10
7秒前
8秒前
9秒前
爱静静应助Rita采纳,获得10
11秒前
sadasdasd发布了新的文献求助10
12秒前
怒发5篇sci发布了新的文献求助10
13秒前
田様应助科研谢啦采纳,获得10
15秒前
和谐的修洁完成签到,获得积分10
16秒前
Jayjay完成签到,获得积分10
16秒前
光之战士完成签到 ,获得积分10
18秒前
香蕉觅云应助太渊采纳,获得10
19秒前
善良的溪灵完成签到,获得积分10
20秒前
鲤鱼初柳发布了新的文献求助10
21秒前
飞翔的梦完成签到,获得积分10
22秒前
悦耳绝施完成签到,获得积分10
25秒前
金桔儿发布了新的文献求助20
25秒前
CodeCraft应助饭ff采纳,获得10
29秒前
新八发布了新的文献求助10
29秒前
合适的凝安完成签到,获得积分20
30秒前
小马甲应助sadasdasd采纳,获得10
32秒前
赫连涵柏完成签到,获得积分10
32秒前
33秒前
36秒前
SciGPT应助科研渣采纳,获得10
36秒前
37秒前
Akim应助dd99081采纳,获得10
37秒前
王鹏程发布了新的文献求助10
37秒前
37秒前
lopik完成签到 ,获得积分10
38秒前
40秒前
40秒前
叶长亭完成签到,获得积分10
40秒前
42秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157464
求助须知:如何正确求助?哪些是违规求助? 2808880
关于积分的说明 7878772
捐赠科研通 2467260
什么是DOI,文献DOI怎么找? 1313299
科研通“疑难数据库(出版商)”最低求助积分说明 630393
版权声明 601919