Kinetic modelling of methanol synthesis over commercial catalysts: A critical assessment

动能 外推法 甲醇 热力学 化学 动力学方案 合成气 航程(航空) 催化作用 材料科学 工艺工程 有机化学 物理 数学 工程类 量子力学 数学分析 复合材料
作者
F. Nestler,Andrea Schütze,Mohamed Ouda,M. J. Hadrich,Achim Schaadt,Siegfried Bajohr,Thomas Kolb
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:394: 124881-124881 被引量:56
标识
DOI:10.1016/j.cej.2020.124881
摘要

Kinetic modelling of methanol synthesis over commercial catalysts is of high importance for reactor and process design. Literature kinetic models were implemented and systematically discussed against a newly developed kinetic model based on published kinetic data. Deviations in the sensitivities of the kinetic models were explained by means of the experimentally covered parameter range. The simulation results proved that an extrapolation of the working range of the kinetic models can lead towards significant simulation errors especially with regard to pressure, stoichiometric number and CO/CO2-ratio considerably limiting the applicability of kinetic models frequently applied in scientific literature. Therefore, the validated data range for kinetic models should be considered when detailed reactor simulations are carried out. With regard to Power-to-Methanol processes special attention should be drawn towards the rate limiting effect of water at high CO2 contents in the syngas. Moreover, it was shown that kinetic models based on data measured over outdated catalysts show significantly lower activity than those derived from state-of-the-art catalysts and should therefore be applied with caution for reactor and process simulations. The plausible behavior of the herein proposed kinetic model was demonstrated by a systematic comparison towards established kinetic approaches within both, an ideal kinetic reactor and an industrial steam cooled tubular reactor. Relative to the state-of-the-art kinetic models it was proven that the herein proposed kinetic model can be applied over the complete industrially relevant working range for methanol synthesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
buuyoo完成签到,获得积分10
刚刚
科研通AI5应助魏煜佳采纳,获得10
刚刚
LLxiaolong完成签到,获得积分10
刚刚
1秒前
1秒前
巨噬细胞A完成签到,获得积分10
1秒前
1秒前
我要读博士完成签到 ,获得积分10
1秒前
xxq完成签到,获得积分20
1秒前
福气小姐完成签到 ,获得积分10
1秒前
搜集达人应助jjy采纳,获得10
2秒前
2秒前
郑总完成签到,获得积分10
2秒前
CipherSage应助马尼拉采纳,获得10
2秒前
SCI完成签到 ,获得积分10
3秒前
4秒前
healer发布了新的文献求助10
4秒前
123完成签到,获得积分20
5秒前
李健的小迷弟应助yili采纳,获得10
5秒前
L.完成签到,获得积分10
5秒前
木子发布了新的文献求助10
5秒前
威武诺言发布了新的文献求助10
5秒前
科研通AI5应助孙二二采纳,获得10
5秒前
5秒前
英姑应助rookie_b0采纳,获得10
6秒前
毛慢慢发布了新的文献求助10
6秒前
123完成签到,获得积分10
6秒前
kangkang完成签到,获得积分10
7秒前
丘比特应助东风第一枝采纳,获得10
7秒前
7秒前
丰知然应助normankasimodo采纳,获得10
8秒前
黑森林发布了新的文献求助30
8秒前
hu970发布了新的文献求助10
8秒前
8秒前
俭朴夜雪发布了新的文献求助30
8秒前
林上草应助lzj001983采纳,获得10
8秒前
小白完成签到,获得积分20
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759