Inter-database validation of a deep learning approach for automatic sleep scoring

计算机科学 人工智能 机器学习 预处理器 一般化 深度学习 背景(考古学) 人工神经网络 基本事实 预测建模 数据挖掘 数据库 生物 数学分析 古生物学 数学
作者
Diego Álvarez-Estévez,Roselyne M. Rijsman
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:16 (8): e0256111-e0256111 被引量:36
标识
DOI:10.1371/journal.pone.0256111
摘要

Development of inter-database generalizable sleep staging algorithms represents a challenge due to increased data variability across different datasets. Sharing data between different centers is also a problem due to potential restrictions due to patient privacy protection. In this work, we describe a new deep learning approach for automatic sleep staging, and address its generalization capabilities on a wide range of public sleep staging databases. We also examine the suitability of a novel approach that uses an ensemble of individual local models and evaluate its impact on the resulting inter-database generalization performance.A general deep learning network architecture for automatic sleep staging is presented. Different preprocessing and architectural variant options are tested. The resulting prediction capabilities are evaluated and compared on a heterogeneous collection of six public sleep staging datasets. Validation is carried out in the context of independent local and external dataset generalization scenarios.Best results were achieved using the CNN_LSTM_5 neural network variant. Average prediction capabilities on independent local testing sets achieved 0.80 kappa score. When individual local models predict data from external datasets, average kappa score decreases to 0.54. Using the proposed ensemble-based approach, average kappa performance on the external dataset prediction scenario increases to 0.62. To our knowledge this is the largest study by the number of datasets so far on validating the generalization capabilities of an automatic sleep staging algorithm using external databases.Validation results show good general performance of our method, as compared with the expected levels of human agreement, as well as to state-of-the-art automatic sleep staging methods. The proposed ensemble-based approach enables flexible and scalable design, allowing dynamic integration of local models into the final ensemble, preserving data locality, and increasing generalization capabilities of the resulting system at the same time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
虚拟的皮卡丘完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
4秒前
bow完成签到 ,获得积分10
4秒前
8秒前
优雅的WAN完成签到 ,获得积分10
9秒前
所所应助cc66采纳,获得10
9秒前
LQ完成签到,获得积分10
10秒前
hui完成签到,获得积分10
10秒前
无心的天真完成签到 ,获得积分10
11秒前
君莫笑完成签到,获得积分10
11秒前
热心不凡完成签到,获得积分10
14秒前
乌特拉完成签到 ,获得积分10
14秒前
晚风完成签到,获得积分10
14秒前
元夕完成签到,获得积分10
14秒前
飘逸蘑菇完成签到 ,获得积分10
16秒前
风中的棒棒糖完成签到 ,获得积分10
19秒前
无私的听荷完成签到,获得积分10
19秒前
飘萍过客完成签到,获得积分10
20秒前
20秒前
21秒前
21秒前
皛鱼完成签到,获得积分10
23秒前
大脸猫完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
25秒前
小林神发布了新的文献求助10
25秒前
adamchris完成签到,获得积分10
25秒前
strama完成签到,获得积分10
26秒前
梓唯忧完成签到 ,获得积分10
27秒前
27秒前
pan完成签到,获得积分10
27秒前
科研通AI6.1应助michael采纳,获得30
29秒前
Cooper应助昏睡的听云采纳,获得10
29秒前
Yuan完成签到,获得积分10
30秒前
碧蓝百合发布了新的文献求助10
32秒前
小林神完成签到,获得积分10
32秒前
32秒前
强小强完成签到,获得积分10
33秒前
lbx完成签到,获得积分10
33秒前
朴素鑫完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789548
求助须知:如何正确求助?哪些是违规求助? 5721282
关于积分的说明 15474982
捐赠科研通 4917368
什么是DOI,文献DOI怎么找? 2646953
邀请新用户注册赠送积分活动 1594561
关于科研通互助平台的介绍 1549099