Inter-database validation of a deep learning approach for automatic sleep scoring

计算机科学 人工智能 机器学习 预处理器 一般化 深度学习 背景(考古学) 人工神经网络 基本事实 预测建模 数据挖掘 数据库 生物 数学分析 古生物学 数学
作者
Diego Álvarez-Estévez,Roselyne M. Rijsman
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:16 (8): e0256111-e0256111 被引量:36
标识
DOI:10.1371/journal.pone.0256111
摘要

Development of inter-database generalizable sleep staging algorithms represents a challenge due to increased data variability across different datasets. Sharing data between different centers is also a problem due to potential restrictions due to patient privacy protection. In this work, we describe a new deep learning approach for automatic sleep staging, and address its generalization capabilities on a wide range of public sleep staging databases. We also examine the suitability of a novel approach that uses an ensemble of individual local models and evaluate its impact on the resulting inter-database generalization performance.A general deep learning network architecture for automatic sleep staging is presented. Different preprocessing and architectural variant options are tested. The resulting prediction capabilities are evaluated and compared on a heterogeneous collection of six public sleep staging datasets. Validation is carried out in the context of independent local and external dataset generalization scenarios.Best results were achieved using the CNN_LSTM_5 neural network variant. Average prediction capabilities on independent local testing sets achieved 0.80 kappa score. When individual local models predict data from external datasets, average kappa score decreases to 0.54. Using the proposed ensemble-based approach, average kappa performance on the external dataset prediction scenario increases to 0.62. To our knowledge this is the largest study by the number of datasets so far on validating the generalization capabilities of an automatic sleep staging algorithm using external databases.Validation results show good general performance of our method, as compared with the expected levels of human agreement, as well as to state-of-the-art automatic sleep staging methods. The proposed ensemble-based approach enables flexible and scalable design, allowing dynamic integration of local models into the final ensemble, preserving data locality, and increasing generalization capabilities of the resulting system at the same time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
团团完成签到,获得积分10
刚刚
zwx发布了新的文献求助10
1秒前
怡然的寻桃关注了科研通微信公众号
2秒前
今天炒鱿鱼完成签到,获得积分20
2秒前
电池小能手完成签到,获得积分10
3秒前
Bubble_bei完成签到 ,获得积分10
4秒前
董恋风完成签到,获得积分10
5秒前
大模型应助一一采纳,获得10
6秒前
6秒前
7秒前
海鑫王完成签到,获得积分10
8秒前
mao关注了科研通微信公众号
8秒前
Attendre完成签到 ,获得积分10
8秒前
爆米花应助Faith采纳,获得10
9秒前
傲娇的月亮完成签到,获得积分10
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
田様应助慢慢采纳,获得10
10秒前
10秒前
劼大大完成签到,获得积分10
10秒前
执着的草丛完成签到,获得积分10
10秒前
10秒前
wanci应助zwx采纳,获得10
11秒前
zwx发布了新的文献求助20
11秒前
12秒前
Owen应助风趣的天奇采纳,获得10
13秒前
clear发布了新的文献求助10
14秒前
Tting发布了新的文献求助10
14秒前
wsd发布了新的文献求助10
14秒前
AhhHuang举报活力怜雪求助涉嫌违规
14秒前
sulin发布了新的文献求助10
14秒前
麦地娜发布了新的文献求助10
14秒前
兜兜风gf完成签到 ,获得积分10
15秒前
15秒前
可爱的函函应助张远最帅采纳,获得10
15秒前
沙库巴曲完成签到,获得积分10
15秒前
熊猫发布了新的文献求助20
16秒前
燕柯龙之介完成签到,获得积分10
16秒前
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049