亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Inter-database validation of a deep learning approach for automatic sleep scoring

计算机科学 人工智能 机器学习 预处理器 一般化 深度学习 背景(考古学) 人工神经网络 基本事实 预测建模 数据挖掘 数据库 生物 数学分析 古生物学 数学
作者
Diego Álvarez-Estévez,Roselyne M. Rijsman
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:16 (8): e0256111-e0256111 被引量:36
标识
DOI:10.1371/journal.pone.0256111
摘要

Development of inter-database generalizable sleep staging algorithms represents a challenge due to increased data variability across different datasets. Sharing data between different centers is also a problem due to potential restrictions due to patient privacy protection. In this work, we describe a new deep learning approach for automatic sleep staging, and address its generalization capabilities on a wide range of public sleep staging databases. We also examine the suitability of a novel approach that uses an ensemble of individual local models and evaluate its impact on the resulting inter-database generalization performance.A general deep learning network architecture for automatic sleep staging is presented. Different preprocessing and architectural variant options are tested. The resulting prediction capabilities are evaluated and compared on a heterogeneous collection of six public sleep staging datasets. Validation is carried out in the context of independent local and external dataset generalization scenarios.Best results were achieved using the CNN_LSTM_5 neural network variant. Average prediction capabilities on independent local testing sets achieved 0.80 kappa score. When individual local models predict data from external datasets, average kappa score decreases to 0.54. Using the proposed ensemble-based approach, average kappa performance on the external dataset prediction scenario increases to 0.62. To our knowledge this is the largest study by the number of datasets so far on validating the generalization capabilities of an automatic sleep staging algorithm using external databases.Validation results show good general performance of our method, as compared with the expected levels of human agreement, as well as to state-of-the-art automatic sleep staging methods. The proposed ensemble-based approach enables flexible and scalable design, allowing dynamic integration of local models into the final ensemble, preserving data locality, and increasing generalization capabilities of the resulting system at the same time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maopf发布了新的文献求助10
1秒前
小蘑菇应助结实的凉面采纳,获得10
3秒前
3秒前
qianyixingchen完成签到 ,获得积分10
7秒前
SciGPT应助沉默的倔驴采纳,获得10
8秒前
迅速初柳发布了新的文献求助10
9秒前
maopf完成签到,获得积分10
13秒前
c7发布了新的文献求助10
14秒前
英俊的铭应助迅速初柳采纳,获得10
17秒前
18秒前
西蓝花战士完成签到 ,获得积分10
22秒前
23秒前
炙热成仁发布了新的文献求助10
24秒前
NI完成签到 ,获得积分10
30秒前
32秒前
赘婿应助悦耳青梦采纳,获得10
36秒前
科研通AI6.1应助我不吃葱采纳,获得10
37秒前
科研通AI6.1应助小年小少采纳,获得20
46秒前
炙热成仁完成签到,获得积分10
47秒前
希希完成签到 ,获得积分10
48秒前
Joy关注了科研通微信公众号
54秒前
Hello应助沉默的倔驴采纳,获得10
58秒前
奶奶的龙应助科研通管家采纳,获得10
59秒前
奶奶的龙应助科研通管家采纳,获得10
59秒前
null应助科研通管家采纳,获得10
59秒前
脑洞疼应助科研通管家采纳,获得10
59秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
在水一方应助科研通管家采纳,获得10
59秒前
奶奶的龙应助科研通管家采纳,获得10
59秒前
李健应助科研通管家采纳,获得10
59秒前
可爱邓邓完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
爱飞的乌龟完成签到,获得积分10
1分钟前
1分钟前
Joy发布了新的文献求助30
1分钟前
1分钟前
1分钟前
Mark_He发布了新的文献求助10
1分钟前
dph完成签到 ,获得积分10
1分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746540
求助须知:如何正确求助?哪些是违规求助? 5435517
关于积分的说明 15355531
捐赠科研通 4886528
什么是DOI,文献DOI怎么找? 2627297
邀请新用户注册赠送积分活动 1575762
关于科研通互助平台的介绍 1532510