Inter-database validation of a deep learning approach for automatic sleep scoring

计算机科学 人工智能 机器学习 预处理器 一般化 深度学习 背景(考古学) 人工神经网络 基本事实 预测建模 数据挖掘 数据库 生物 数学分析 古生物学 数学
作者
Diego Álvarez-Estévez,Roselyne M. Rijsman
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:16 (8): e0256111-e0256111 被引量:36
标识
DOI:10.1371/journal.pone.0256111
摘要

Development of inter-database generalizable sleep staging algorithms represents a challenge due to increased data variability across different datasets. Sharing data between different centers is also a problem due to potential restrictions due to patient privacy protection. In this work, we describe a new deep learning approach for automatic sleep staging, and address its generalization capabilities on a wide range of public sleep staging databases. We also examine the suitability of a novel approach that uses an ensemble of individual local models and evaluate its impact on the resulting inter-database generalization performance.A general deep learning network architecture for automatic sleep staging is presented. Different preprocessing and architectural variant options are tested. The resulting prediction capabilities are evaluated and compared on a heterogeneous collection of six public sleep staging datasets. Validation is carried out in the context of independent local and external dataset generalization scenarios.Best results were achieved using the CNN_LSTM_5 neural network variant. Average prediction capabilities on independent local testing sets achieved 0.80 kappa score. When individual local models predict data from external datasets, average kappa score decreases to 0.54. Using the proposed ensemble-based approach, average kappa performance on the external dataset prediction scenario increases to 0.62. To our knowledge this is the largest study by the number of datasets so far on validating the generalization capabilities of an automatic sleep staging algorithm using external databases.Validation results show good general performance of our method, as compared with the expected levels of human agreement, as well as to state-of-the-art automatic sleep staging methods. The proposed ensemble-based approach enables flexible and scalable design, allowing dynamic integration of local models into the final ensemble, preserving data locality, and increasing generalization capabilities of the resulting system at the same time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
李小小完成签到,获得积分10
4秒前
plcukyu发布了新的文献求助10
4秒前
浮舟寄沧海完成签到,获得积分10
4秒前
4秒前
zzh发布了新的文献求助10
4秒前
decademe完成签到,获得积分10
6秒前
6秒前
7秒前
子月之路发布了新的文献求助10
7秒前
Joff_W发布了新的文献求助10
7秒前
7秒前
热心芷雪完成签到,获得积分10
7秒前
23xyke完成签到,获得积分10
8秒前
CodeCraft应助萌宁采纳,获得10
9秒前
10秒前
汎影发布了新的文献求助10
11秒前
斯文败类应助Z_2243采纳,获得30
11秒前
科研通AI6应助zzh采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
Dan完成签到,获得积分10
13秒前
大模型应助me采纳,获得10
13秒前
Islay50ppm完成签到 ,获得积分10
14秒前
jasmine完成签到,获得积分10
14秒前
科研通AI6应助热情钵钵鸡采纳,获得10
15秒前
现代子默发布了新的文献求助10
16秒前
18秒前
坨坨完成签到,获得积分10
18秒前
木木木完成签到,获得积分10
18秒前
明灯三千完成签到,获得积分10
18秒前
wanci应助heidi采纳,获得10
18秒前
Yuuuan完成签到,获得积分10
18秒前
Andone完成签到,获得积分10
20秒前
21秒前
拼搏太英完成签到,获得积分10
22秒前
木木木发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660323
求助须知:如何正确求助?哪些是违规求助? 4833206
关于积分的说明 15090227
捐赠科研通 4818974
什么是DOI,文献DOI怎么找? 2578909
邀请新用户注册赠送积分活动 1533480
关于科研通互助平台的介绍 1492243