Inter-database validation of a deep learning approach for automatic sleep scoring

计算机科学 人工智能 机器学习 预处理器 一般化 深度学习 背景(考古学) 人工神经网络 基本事实 预测建模 数据挖掘 数据库 数学 生物 数学分析 古生物学
作者
Diego Álvarez-Estévez,Roselyne M. Rijsman
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:16 (8): e0256111-e0256111 被引量:36
标识
DOI:10.1371/journal.pone.0256111
摘要

Development of inter-database generalizable sleep staging algorithms represents a challenge due to increased data variability across different datasets. Sharing data between different centers is also a problem due to potential restrictions due to patient privacy protection. In this work, we describe a new deep learning approach for automatic sleep staging, and address its generalization capabilities on a wide range of public sleep staging databases. We also examine the suitability of a novel approach that uses an ensemble of individual local models and evaluate its impact on the resulting inter-database generalization performance.A general deep learning network architecture for automatic sleep staging is presented. Different preprocessing and architectural variant options are tested. The resulting prediction capabilities are evaluated and compared on a heterogeneous collection of six public sleep staging datasets. Validation is carried out in the context of independent local and external dataset generalization scenarios.Best results were achieved using the CNN_LSTM_5 neural network variant. Average prediction capabilities on independent local testing sets achieved 0.80 kappa score. When individual local models predict data from external datasets, average kappa score decreases to 0.54. Using the proposed ensemble-based approach, average kappa performance on the external dataset prediction scenario increases to 0.62. To our knowledge this is the largest study by the number of datasets so far on validating the generalization capabilities of an automatic sleep staging algorithm using external databases.Validation results show good general performance of our method, as compared with the expected levels of human agreement, as well as to state-of-the-art automatic sleep staging methods. The proposed ensemble-based approach enables flexible and scalable design, allowing dynamic integration of local models into the final ensemble, preserving data locality, and increasing generalization capabilities of the resulting system at the same time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俞秋烟完成签到,获得积分10
1秒前
YpH应助LZxyH采纳,获得10
1秒前
1秒前
1秒前
yulong完成签到,获得积分10
2秒前
3秒前
nyzcc完成签到,获得积分10
4秒前
4秒前
5秒前
罗燕发布了新的文献求助20
5秒前
6秒前
梦锂铧发布了新的文献求助10
6秒前
7秒前
10秒前
orixero应助花开四海采纳,获得10
10秒前
勤劳的狗发布了新的文献求助10
10秒前
小蘑菇应助杨Yang采纳,获得10
11秒前
11秒前
nyzcc发布了新的文献求助20
11秒前
Xutz应助罗小学采纳,获得10
12秒前
12秒前
1111完成签到,获得积分10
12秒前
12秒前
12秒前
15秒前
Akim应助huxiao采纳,获得10
15秒前
zkPlato发布了新的文献求助10
15秒前
海绵宝宝完成签到,获得积分10
16秒前
18秒前
英姑应助奋斗的绝悟采纳,获得10
18秒前
lh发布了新的文献求助30
19秒前
猪爸爸发布了新的文献求助10
20秒前
温梦花雨完成签到 ,获得积分10
21秒前
科研通AI2S应助zkPlato采纳,获得10
21秒前
无语的凡梦完成签到,获得积分10
22秒前
简单发布了新的文献求助10
22秒前
22秒前
猫猫完成签到,获得积分10
25秒前
25秒前
26秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228354
求助须知:如何正确求助?哪些是违规求助? 2876112
关于积分的说明 8193906
捐赠科研通 2543258
什么是DOI,文献DOI怎么找? 1373602
科研通“疑难数据库(出版商)”最低求助积分说明 646814
邀请新用户注册赠送积分活动 621333