已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Inter-database validation of a deep learning approach for automatic sleep scoring

计算机科学 人工智能 机器学习 预处理器 一般化 深度学习 背景(考古学) 人工神经网络 基本事实 预测建模 数据挖掘 数据库 生物 数学分析 古生物学 数学
作者
Diego Álvarez-Estévez,Roselyne M. Rijsman
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:16 (8): e0256111-e0256111 被引量:36
标识
DOI:10.1371/journal.pone.0256111
摘要

Development of inter-database generalizable sleep staging algorithms represents a challenge due to increased data variability across different datasets. Sharing data between different centers is also a problem due to potential restrictions due to patient privacy protection. In this work, we describe a new deep learning approach for automatic sleep staging, and address its generalization capabilities on a wide range of public sleep staging databases. We also examine the suitability of a novel approach that uses an ensemble of individual local models and evaluate its impact on the resulting inter-database generalization performance.A general deep learning network architecture for automatic sleep staging is presented. Different preprocessing and architectural variant options are tested. The resulting prediction capabilities are evaluated and compared on a heterogeneous collection of six public sleep staging datasets. Validation is carried out in the context of independent local and external dataset generalization scenarios.Best results were achieved using the CNN_LSTM_5 neural network variant. Average prediction capabilities on independent local testing sets achieved 0.80 kappa score. When individual local models predict data from external datasets, average kappa score decreases to 0.54. Using the proposed ensemble-based approach, average kappa performance on the external dataset prediction scenario increases to 0.62. To our knowledge this is the largest study by the number of datasets so far on validating the generalization capabilities of an automatic sleep staging algorithm using external databases.Validation results show good general performance of our method, as compared with the expected levels of human agreement, as well as to state-of-the-art automatic sleep staging methods. The proposed ensemble-based approach enables flexible and scalable design, allowing dynamic integration of local models into the final ensemble, preserving data locality, and increasing generalization capabilities of the resulting system at the same time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jim发布了新的文献求助20
2秒前
微课发布了新的文献求助10
3秒前
北冥有鱼完成签到,获得积分10
4秒前
程住气完成签到 ,获得积分10
4秒前
结实黑猫应助藤井树采纳,获得10
4秒前
迷路完成签到 ,获得积分10
6秒前
月关完成签到 ,获得积分10
7秒前
SciGPT应助无轩采纳,获得10
7秒前
朴素海亦完成签到 ,获得积分10
9秒前
12秒前
13秒前
xinjie完成签到,获得积分10
13秒前
HMYX完成签到 ,获得积分10
14秒前
风月难安发布了新的文献求助10
15秒前
清风明月完成签到 ,获得积分10
16秒前
16秒前
优美紫槐完成签到,获得积分10
17秒前
ComeOn发布了新的文献求助10
19秒前
19秒前
hqh发布了新的文献求助10
20秒前
嘻嘻完成签到 ,获得积分10
21秒前
25秒前
乐乐应助THEFAN采纳,获得10
25秒前
几两完成签到 ,获得积分10
26秒前
倪妮完成签到 ,获得积分10
26秒前
haprier完成签到 ,获得积分10
27秒前
无花果应助琪琪采纳,获得10
28秒前
baqiuzunzhe完成签到,获得积分10
29秒前
111完成签到 ,获得积分10
29秒前
呆萌滑板完成签到 ,获得积分10
30秒前
淡然冬灵完成签到,获得积分10
30秒前
JamesPei应助THEFAN采纳,获得10
30秒前
桐桐应助Yiyin采纳,获得10
30秒前
Chris完成签到 ,获得积分0
31秒前
SciGPT应助微课采纳,获得10
32秒前
斯文的苡完成签到,获得积分10
32秒前
头号玩家完成签到,获得积分10
32秒前
半夏黄良发布了新的文献求助10
33秒前
钟D摆完成签到 ,获得积分10
33秒前
Sherry完成签到 ,获得积分10
33秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705435
求助须知:如何正确求助?哪些是违规求助? 5164132
关于积分的说明 15245526
捐赠科研通 4859289
什么是DOI,文献DOI怎么找? 2607711
邀请新用户注册赠送积分活动 1558849
关于科研通互助平台的介绍 1516399