Inter-database validation of a deep learning approach for automatic sleep scoring

计算机科学 人工智能 机器学习 预处理器 一般化 深度学习 背景(考古学) 人工神经网络 基本事实 预测建模 数据挖掘 数据库 数学 生物 数学分析 古生物学
作者
Diego Álvarez-Estévez,Roselyne M. Rijsman
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:16 (8): e0256111-e0256111 被引量:36
标识
DOI:10.1371/journal.pone.0256111
摘要

Development of inter-database generalizable sleep staging algorithms represents a challenge due to increased data variability across different datasets. Sharing data between different centers is also a problem due to potential restrictions due to patient privacy protection. In this work, we describe a new deep learning approach for automatic sleep staging, and address its generalization capabilities on a wide range of public sleep staging databases. We also examine the suitability of a novel approach that uses an ensemble of individual local models and evaluate its impact on the resulting inter-database generalization performance.A general deep learning network architecture for automatic sleep staging is presented. Different preprocessing and architectural variant options are tested. The resulting prediction capabilities are evaluated and compared on a heterogeneous collection of six public sleep staging datasets. Validation is carried out in the context of independent local and external dataset generalization scenarios.Best results were achieved using the CNN_LSTM_5 neural network variant. Average prediction capabilities on independent local testing sets achieved 0.80 kappa score. When individual local models predict data from external datasets, average kappa score decreases to 0.54. Using the proposed ensemble-based approach, average kappa performance on the external dataset prediction scenario increases to 0.62. To our knowledge this is the largest study by the number of datasets so far on validating the generalization capabilities of an automatic sleep staging algorithm using external databases.Validation results show good general performance of our method, as compared with the expected levels of human agreement, as well as to state-of-the-art automatic sleep staging methods. The proposed ensemble-based approach enables flexible and scalable design, allowing dynamic integration of local models into the final ensemble, preserving data locality, and increasing generalization capabilities of the resulting system at the same time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
you发布了新的文献求助20
1秒前
存存发布了新的文献求助10
3秒前
3秒前
8秒前
李昕123发布了新的文献求助10
8秒前
浮游应助123采纳,获得10
9秒前
pluto应助WX采纳,获得10
9秒前
Oshur发布了新的文献求助10
9秒前
10秒前
DZY完成签到,获得积分10
11秒前
11秒前
asdfghjkl发布了新的文献求助10
11秒前
JUJUJU完成签到,获得积分10
11秒前
洛希完成签到,获得积分10
12秒前
浮游应助科研通管家采纳,获得10
13秒前
风清扬应助科研通管家采纳,获得30
13秒前
桐桐应助科研通管家采纳,获得10
13秒前
李健应助科研通管家采纳,获得10
13秒前
风清扬应助科研通管家采纳,获得30
13秒前
华仔应助科研通管家采纳,获得20
13秒前
王77应助科研通管家采纳,获得150
13秒前
情怀应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
13秒前
可莉完成签到 ,获得积分10
13秒前
2131s发布了新的文献求助10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
c程序语言发布了新的文献求助10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
今后应助科研通管家采纳,获得10
13秒前
14秒前
14秒前
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
14秒前
15秒前
okay好好完成签到,获得积分10
15秒前
妙玄关注了科研通微信公众号
16秒前
半糖糖发布了新的文献求助10
17秒前
RED发布了新的文献求助10
18秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207406
求助须知:如何正确求助?哪些是违规求助? 4385353
关于积分的说明 13656706
捐赠科研通 4243935
什么是DOI,文献DOI怎么找? 2328474
邀请新用户注册赠送积分活动 1326166
关于科研通互助平台的介绍 1278375