Inter-database validation of a deep learning approach for automatic sleep scoring

计算机科学 人工智能 机器学习 预处理器 一般化 深度学习 背景(考古学) 人工神经网络 基本事实 预测建模 数据挖掘 数据库 生物 数学分析 古生物学 数学
作者
Diego Álvarez-Estévez,Roselyne M. Rijsman
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:16 (8): e0256111-e0256111 被引量:36
标识
DOI:10.1371/journal.pone.0256111
摘要

Development of inter-database generalizable sleep staging algorithms represents a challenge due to increased data variability across different datasets. Sharing data between different centers is also a problem due to potential restrictions due to patient privacy protection. In this work, we describe a new deep learning approach for automatic sleep staging, and address its generalization capabilities on a wide range of public sleep staging databases. We also examine the suitability of a novel approach that uses an ensemble of individual local models and evaluate its impact on the resulting inter-database generalization performance.A general deep learning network architecture for automatic sleep staging is presented. Different preprocessing and architectural variant options are tested. The resulting prediction capabilities are evaluated and compared on a heterogeneous collection of six public sleep staging datasets. Validation is carried out in the context of independent local and external dataset generalization scenarios.Best results were achieved using the CNN_LSTM_5 neural network variant. Average prediction capabilities on independent local testing sets achieved 0.80 kappa score. When individual local models predict data from external datasets, average kappa score decreases to 0.54. Using the proposed ensemble-based approach, average kappa performance on the external dataset prediction scenario increases to 0.62. To our knowledge this is the largest study by the number of datasets so far on validating the generalization capabilities of an automatic sleep staging algorithm using external databases.Validation results show good general performance of our method, as compared with the expected levels of human agreement, as well as to state-of-the-art automatic sleep staging methods. The proposed ensemble-based approach enables flexible and scalable design, allowing dynamic integration of local models into the final ensemble, preserving data locality, and increasing generalization capabilities of the resulting system at the same time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助风轩轩采纳,获得10
1秒前
英勇的翠霜完成签到,获得积分10
1秒前
汉堡包应助个性的涫采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
guojingjing发布了新的文献求助10
3秒前
一只不受管束的小狸Miao完成签到 ,获得积分10
4秒前
lllllty完成签到,获得积分10
4秒前
周周完成签到 ,获得积分10
5秒前
烟花应助itharmony采纳,获得10
5秒前
香蕉梨愁发布了新的文献求助10
5秒前
老李完成签到,获得积分10
7秒前
2号完成签到,获得积分10
7秒前
王粒伊完成签到,获得积分10
8秒前
sst完成签到,获得积分10
9秒前
9秒前
充电宝应助MHR采纳,获得10
11秒前
13秒前
玩命的白亦关注了科研通微信公众号
13秒前
tim发布了新的文献求助10
13秒前
14秒前
15秒前
lucky完成签到 ,获得积分10
15秒前
李健应助小海棉采纳,获得10
16秒前
瘦瘦雅香完成签到,获得积分10
16秒前
16秒前
敏感远锋完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
melody发布了新的文献求助10
19秒前
善学以致用应助香蕉梨愁采纳,获得10
19秒前
ll发布了新的文献求助20
20秒前
xxx发布了新的文献求助10
20秒前
21秒前
22秒前
22秒前
酷波er应助千凡采纳,获得10
22秒前
22秒前
superxiao应助标致断天采纳,获得10
22秒前
钱多多完成签到 ,获得积分10
23秒前
Or1ll完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618349
求助须知:如何正确求助?哪些是违规求助? 4703244
关于积分的说明 14921791
捐赠科研通 4757233
什么是DOI,文献DOI怎么找? 2550059
邀请新用户注册赠送积分活动 1512904
关于科研通互助平台的介绍 1474299