Hybrid multi-objective robust design optimization of a truck cab considering fatigue life

克里金 田口方法 多目标优化 工程设计过程 规范化(社会学) 参数统计 卡车 粒子群优化 托普西斯 替代模型 计算机科学 数学优化 帕累托原理 实验设计 工程类 数学 汽车工程 统计 机器学习 机械工程 运筹学 社会学 人类学
作者
Na Qiu,Jin Zhi-yang,Jinyi Liu,Lirong Fu,Zhenbin Chen,Nam Ho Kim
出处
期刊:Thin-walled Structures [Elsevier BV]
卷期号:162: 107545-107545 被引量:17
标识
DOI:10.1016/j.tws.2021.107545
摘要

Fatigue performance optimization without considering uncertainties of design variables can be problematic or even dangerous in real life. In this paper, a hybrid multi-objective robust design optimization methodology is proposed to make a proper tradeoff between the lightweight and fatigue durability for the design of a truck cab. However, the uncertainties, in reality, could lead to the optimized design unstable or even useless; this situation can be more serious in non-deterministic optimization. The Taguchi robust parametric design technique is adopted to refine the intervals of design variables for the subsequent optimization based on the validated simulation model against fatigue tests. Three types of dual surrogate models, namely the dual polynomial response surface, dual Kriging, and dual radial basis function methods are compared, and the dual Kriging is selected to model the mean and standard deviation of the mass and fatigue life for its high accuracy. The multi-objective particle swarm optimization algorithm is utilized to perform robust design. The Pareto fronts with different weight factors are analyzed to provide some insightful information on optimum designs. The robust optimization results demonstrate that the optimized design improves the fatigue life and reduces the mass of the truck cab significantly and becomes less sensitive to uncertainty. Different optimums can be obtained based on three different normalization techniques (Linear, vector, and LMM) and three MCDM methods (TOPSIS, WPM, and WSM) from the same Pareto front. The comparison analysis emphasizes the importance of normalization and MCDM method selection in the optimal design selection process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
12345tty发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
椰子壳发布了新的文献求助10
4秒前
lei发布了新的文献求助10
7秒前
细心映菱发布了新的文献求助10
7秒前
Liu应助读书酱采纳,获得30
10秒前
11秒前
善良傲珊完成签到,获得积分10
12秒前
12秒前
冷HorToo完成签到 ,获得积分10
13秒前
Surge发布了新的文献求助20
14秒前
魔幻大有完成签到 ,获得积分10
15秒前
垃圾桶发布了新的文献求助10
15秒前
15秒前
传奇3应助WXX采纳,获得10
15秒前
16秒前
热心市民小红花应助丢丢采纳,获得10
20秒前
grumpysquirel完成签到,获得积分10
20秒前
啦啦啦发布了新的文献求助10
20秒前
20秒前
道友且慢发布了新的文献求助20
21秒前
天竹子发布了新的文献求助10
21秒前
Longfenzhong完成签到,获得积分10
22秒前
江维维豆奶完成签到 ,获得积分10
24秒前
菜鸟完成签到,获得积分10
25秒前
孳孳为善6387完成签到,获得积分10
26秒前
酷波er应助庾稀采纳,获得10
26秒前
jihenyouai0213完成签到,获得积分10
27秒前
朴实山兰完成签到,获得积分10
29秒前
小蘑菇应助YZF采纳,获得10
32秒前
蓝天白云发布了新的文献求助10
32秒前
自然的士晋完成签到,获得积分20
34秒前
狸狸完成签到,获得积分20
36秒前
JamesPei应助吃猫的鱼采纳,获得10
36秒前
bxyyy应助虚幻龙猫采纳,获得10
38秒前
39秒前
Akim应助天竹子采纳,获得10
40秒前
包容秋荷发布了新的文献求助10
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959759
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127457
捐赠科研通 3237969
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803019