Hybrid multi-objective robust design optimization of a truck cab considering fatigue life

克里金 田口方法 多目标优化 工程设计过程 规范化(社会学) 参数统计 卡车 粒子群优化 托普西斯 替代模型 计算机科学 数学优化 帕累托原理 实验设计 工程类 数学 汽车工程 统计 机器学习 机械工程 运筹学 社会学 人类学
作者
Na Qiu,Jin Zhi-yang,Jinyi Liu,Lirong Fu,Zhenbin Chen,Nam Ho Kim
出处
期刊:Thin-walled Structures [Elsevier]
卷期号:162: 107545-107545 被引量:17
标识
DOI:10.1016/j.tws.2021.107545
摘要

Fatigue performance optimization without considering uncertainties of design variables can be problematic or even dangerous in real life. In this paper, a hybrid multi-objective robust design optimization methodology is proposed to make a proper tradeoff between the lightweight and fatigue durability for the design of a truck cab. However, the uncertainties, in reality, could lead to the optimized design unstable or even useless; this situation can be more serious in non-deterministic optimization. The Taguchi robust parametric design technique is adopted to refine the intervals of design variables for the subsequent optimization based on the validated simulation model against fatigue tests. Three types of dual surrogate models, namely the dual polynomial response surface, dual Kriging, and dual radial basis function methods are compared, and the dual Kriging is selected to model the mean and standard deviation of the mass and fatigue life for its high accuracy. The multi-objective particle swarm optimization algorithm is utilized to perform robust design. The Pareto fronts with different weight factors are analyzed to provide some insightful information on optimum designs. The robust optimization results demonstrate that the optimized design improves the fatigue life and reduces the mass of the truck cab significantly and becomes less sensitive to uncertainty. Different optimums can be obtained based on three different normalization techniques (Linear, vector, and LMM) and three MCDM methods (TOPSIS, WPM, and WSM) from the same Pareto front. The comparison analysis emphasizes the importance of normalization and MCDM method selection in the optimal design selection process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
认真子涵发布了新的文献求助10
1秒前
1秒前
1秒前
科研小刘完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
野草完成签到,获得积分10
3秒前
3秒前
CipherSage应助大红采纳,获得10
4秒前
九月的某一天完成签到,获得积分20
4秒前
5秒前
白华苍松发布了新的文献求助10
5秒前
正直无极发布了新的文献求助10
6秒前
烟花应助川上富江采纳,获得10
6秒前
科研通AI2S应助17采纳,获得10
7秒前
英俊的铭应助叶白山采纳,获得10
7秒前
充电宝应助Kin_L采纳,获得20
7秒前
xxy发布了新的文献求助10
7秒前
细细发布了新的文献求助50
7秒前
7秒前
8秒前
diki完成签到,获得积分10
8秒前
领导范儿应助surain采纳,获得10
8秒前
天天快乐应助闪闪秋凌采纳,获得10
8秒前
9秒前
思源应助云月林生采纳,获得10
9秒前
采集瘤胃液一次完成签到 ,获得积分10
9秒前
香蕉豌豆发布了新的文献求助10
11秒前
天天快乐应助mygod采纳,获得10
11秒前
11秒前
11秒前
swing发布了新的文献求助10
12秒前
科目三应助神途采纳,获得10
12秒前
kingjames发布了新的文献求助10
13秒前
13秒前
qing_he应助严永桂采纳,获得10
13秒前
酷酷萃发布了新的文献求助10
13秒前
阿珩发布了新的文献求助10
13秒前
呆萌祥完成签到,获得积分10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149056
求助须知:如何正确求助?哪些是违规求助? 2800110
关于积分的说明 7838594
捐赠科研通 2457644
什么是DOI,文献DOI怎么找? 1307938
科研通“疑难数据库(出版商)”最低求助积分说明 628362
版权声明 601685