纳米棒
石墨烯
材料科学
纳米复合材料
氧化物
电化学气体传感器
检出限
化学工程
氧化钴
纳米技术
电极
电化学
化学
色谱法
冶金
工程类
物理化学
作者
Narasimha Murthy Umesh,J. Antolin Jesila,Sea‐Fue Wang,K. S. Shalini Devi,Mani Govindasamy,Asma A. Alothman,Razan A. Alshgari
标识
DOI:10.1016/j.colsurfb.2021.111577
摘要
Abstract In this work, we report a novel preparation of selenium nanorods (Se) doped cobalt oxide (Co3O4) nanoflowers encapsulated with graphene oxide (GO) nanocomposite (NC). Se nanorods were successfully decorated on Co3O4 nanoflowers and an increase in electrical conductivity was observed in Se-Co3O4@GO-NC. The as-prepared Se-Co3O4@GO-NC was utilized as an effective nanocomposite for the electrochemical detection of dimetridazole (DMZ) for the first time in the field of electrochemical sensors. Se-Co3O4@GO-NC modified glassy carbon electrode (GCE) which showed an excellent cathodic current response (17.6 μA) at the lower potential at -0.7314 V upon DMZ sensing. With the various optimized conditions, Se-Co3O4@GO-NC based electrochemical sensor displayed a lengthy linear range of 0.02–83.72 μM, limit of detection 3.4 nM and sensitivity of 1.898 μA.μM−1. cm−2 for DMZ detection. In addition, Se-Co3O4@GO-NC revealed fabulous catalytic reduction activity for DMZ, when compared to GO and Se-Co3O4 modified GCE. Additionally, Se-Co3O4@GO-NC is applied in real sample analysis of pigeon egg, milk and pigeon meat. The results illustrated that Se-Co3O4@GO-NC can be a promising nanocomposite for the electrocatalytic reduction of DMZ in clinical samples in biomedical field.
科研通智能强力驱动
Strongly Powered by AbleSci AI