Abstract With the aim to develop electrically conductive adhesives (ECAs) as alternatives for traditional lead-based or lead-free solders in electronic packaging, we report an outstanding enhancement of electrical conductivity of epoxy ECAs filled with silver nanoparticles (AgNP)-decorated graphene nanoplatelets (AgNP@GNP). In order to avoid the deterioration of the superior properties of GNP, the GNP is directly sensitized by Sn precursor without conventional harsh-conditioned graphene oxide (GO) preparation, followed by the decoration of AgNP on sensitized GNP. The structural and morphological properties of AgNP@GNP were characterized using XRD, TEM, Raman, and TGA. The excellent distribution of SnO2 and AgNP on GNP could be explained by the attractive force between protonated GNP (pH +20 mV) and lone-paired stannous ions. The electrical conductivity of as-prepared AgNP@GNP (1.3 × 105 S/cm) was nearly 6500 times than that of pristine GNP. Moreover, the electrical conductivity of the 20 vol% AgNP@GNP/epoxy ECAs was almost 500 times higher than that of pristine GNP/epoxy and 27-fold higher than that of conventional AgNP@GO/epoxy ECA.