Guidelines for creating artificial neural network empirical interatomic potential from first-principles molecular dynamics data under specific conditions and its application to α-Ag2Se

分子动力学 计算机科学 原子间势 人工神经网络 趋同(经济学) 加速度 比例(比率) 材料科学 统计物理学 人工智能 物理 计算化学 化学 量子力学 经济增长 经济 经典力学
作者
Kohei Shimamura,Shogo Fukushima,Akihide Koura,Fuyuki Shimojo,Masaaki Misawa,Rajiv K. Kalia,Aiichiro Nakano,Priya Vashishta,Takashi Matsubara,Shigenori Tanaka
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:151 (12) 被引量:20
标识
DOI:10.1063/1.5116420
摘要

First-principles molecular dynamics (FPMD) simulations are highly accurate, but due to their high calculation cost, the computational scale is often limited to hundreds of atoms and few picoseconds under specific temperature and pressure conditions. We present here the guidelines for creating artificial neural network empirical interatomic potential (ANN potential) trained with such a limited FPMD data, which can perform long time scale MD simulations at least under the same conditions. The FPMD data for training are prepared on the basis of the convergence of radial distribution function [g(r)]. While training the ANN using total energy and atomic forces of the FPMD data, the error of pressure is also monitored and minimized. To create further robust potential, we add a small amount of FPMD data to reproduce the interaction between two atoms that are close to each other. ANN potentials for α-Ag2Se were created as an application example, and it has been confirmed that not only g(r) and mean square displacements but also the specific heat requiring a long time scale simulation matched the FPMD and the experimental values. In addition, the MD simulation using the ANN potential achieved over 104 acceleration over the FPMD one. The guidelines proposed here mitigate the creation difficulty of the ANN potential, and a lot of FPMD data sleeping on the hard disk after the research may be put on the front stage again.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小何发布了新的文献求助10
1秒前
2秒前
4秒前
4秒前
罗大壮发布了新的文献求助10
4秒前
Iris完成签到 ,获得积分10
5秒前
Ally发布了新的文献求助10
6秒前
茶茶完成签到,获得积分10
6秒前
酷酷的绮完成签到,获得积分10
7秒前
弦断陌殇应助努力小周采纳,获得50
8秒前
罗大壮完成签到,获得积分10
11秒前
11秒前
12秒前
15秒前
15秒前
16秒前
高贵梦秋发布了新的文献求助10
18秒前
19秒前
Linson发布了新的文献求助10
21秒前
SYY完成签到,获得积分10
22秒前
ahq发布了新的文献求助10
22秒前
somnus_fu发布了新的文献求助50
22秒前
citrus完成签到,获得积分10
23秒前
南京必吃发布了新的文献求助10
23秒前
24秒前
QiLe完成签到 ,获得积分10
25秒前
25秒前
量子星尘发布了新的文献求助10
28秒前
风中冰香应助WZ采纳,获得10
29秒前
29秒前
完美世界应助somnus_fu采纳,获得10
30秒前
Hello应助Evander采纳,获得10
31秒前
香蕉诗蕊给爱喷火的小恐龙的求助进行了留言
31秒前
倪倪发布了新的文献求助30
31秒前
33秒前
mera发布了新的文献求助30
33秒前
3sigma发布了新的文献求助10
34秒前
37秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073