Guidelines for creating artificial neural network empirical interatomic potential from first-principles molecular dynamics data under specific conditions and its application to α-Ag2Se

分子动力学 计算机科学 原子间势 人工神经网络 趋同(经济学) 加速度 比例(比率) 材料科学 统计物理学 人工智能 物理 计算化学 化学 量子力学 经济增长 经济 经典力学
作者
Kohei Shimamura,Shogo Fukushima,Akihide Koura,Fuyuki Shimojo,Masaaki Misawa,Rajiv K. Kalia,Aiichiro Nakano,Priya Vashishta,Takashi Matsubara,Shigenori Tanaka
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:151 (12) 被引量:20
标识
DOI:10.1063/1.5116420
摘要

First-principles molecular dynamics (FPMD) simulations are highly accurate, but due to their high calculation cost, the computational scale is often limited to hundreds of atoms and few picoseconds under specific temperature and pressure conditions. We present here the guidelines for creating artificial neural network empirical interatomic potential (ANN potential) trained with such a limited FPMD data, which can perform long time scale MD simulations at least under the same conditions. The FPMD data for training are prepared on the basis of the convergence of radial distribution function [g(r)]. While training the ANN using total energy and atomic forces of the FPMD data, the error of pressure is also monitored and minimized. To create further robust potential, we add a small amount of FPMD data to reproduce the interaction between two atoms that are close to each other. ANN potentials for α-Ag2Se were created as an application example, and it has been confirmed that not only g(r) and mean square displacements but also the specific heat requiring a long time scale simulation matched the FPMD and the experimental values. In addition, the MD simulation using the ANN potential achieved over 104 acceleration over the FPMD one. The guidelines proposed here mitigate the creation difficulty of the ANN potential, and a lot of FPMD data sleeping on the hard disk after the research may be put on the front stage again.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nicole发布了新的文献求助30
刚刚
1秒前
3秒前
研友_564485应助HJJHJH采纳,获得50
3秒前
单纯的易文完成签到 ,获得积分10
6秒前
7秒前
9秒前
10秒前
TT发布了新的文献求助100
14秒前
余姓懒发布了新的文献求助10
17秒前
百里守约完成签到 ,获得积分10
19秒前
在水一方应助猪猪hero采纳,获得30
21秒前
科研通AI5应助幸福大白采纳,获得10
23秒前
小敏哼应助幸福大白采纳,获得10
23秒前
科研通AI5应助幸福大白采纳,获得10
23秒前
KEQIN应助幸福大白采纳,获得10
23秒前
KEQIN应助幸福大白采纳,获得10
23秒前
搜集达人应助幸福大白采纳,获得10
23秒前
科研通AI5应助幸福大白采纳,获得10
23秒前
ding应助幸福大白采纳,获得10
23秒前
小马甲应助幸福大白采纳,获得10
23秒前
Regulusyang完成签到,获得积分10
24秒前
24秒前
研友_VZG7GZ应助维妮妮采纳,获得10
26秒前
七曜应助沉默的宛筠采纳,获得10
27秒前
27秒前
28秒前
猪猪hero发布了新的文献求助30
29秒前
gnufgg完成签到,获得积分10
30秒前
你的风筝应助饱满从露采纳,获得10
30秒前
可爱的函函应助abletoo采纳,获得20
30秒前
清秀鑫鹏发布了新的文献求助10
32秒前
胡健发布了新的文献求助10
33秒前
Lucas应助河鲸采纳,获得20
34秒前
壮观映波发布了新的文献求助20
35秒前
37秒前
搜集达人应助景清采纳,获得10
37秒前
科研通AI2S应助胡健采纳,获得10
38秒前
喵喵怕恰兔完成签到 ,获得积分10
39秒前
传奇3应助瞿亭龙采纳,获得10
40秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993569
求助须知:如何正确求助?哪些是违规求助? 3534299
关于积分的说明 11265160
捐赠科研通 3274074
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712