Guidelines for creating artificial neural network empirical interatomic potential from first-principles molecular dynamics data under specific conditions and its application to α-Ag2Se

分子动力学 计算机科学 原子间势 人工神经网络 趋同(经济学) 加速度 比例(比率) 材料科学 统计物理学 人工智能 物理 计算化学 化学 量子力学 经济增长 经济 经典力学
作者
Kohei Shimamura,Shogo Fukushima,Akihide Koura,Fuyuki Shimojo,Masaaki Misawa,Rajiv K. Kalia,Aiichiro Nakano,Priya Vashishta,Takashi Matsubara,Shigenori Tanaka
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:151 (12) 被引量:20
标识
DOI:10.1063/1.5116420
摘要

First-principles molecular dynamics (FPMD) simulations are highly accurate, but due to their high calculation cost, the computational scale is often limited to hundreds of atoms and few picoseconds under specific temperature and pressure conditions. We present here the guidelines for creating artificial neural network empirical interatomic potential (ANN potential) trained with such a limited FPMD data, which can perform long time scale MD simulations at least under the same conditions. The FPMD data for training are prepared on the basis of the convergence of radial distribution function [g(r)]. While training the ANN using total energy and atomic forces of the FPMD data, the error of pressure is also monitored and minimized. To create further robust potential, we add a small amount of FPMD data to reproduce the interaction between two atoms that are close to each other. ANN potentials for α-Ag2Se were created as an application example, and it has been confirmed that not only g(r) and mean square displacements but also the specific heat requiring a long time scale simulation matched the FPMD and the experimental values. In addition, the MD simulation using the ANN potential achieved over 104 acceleration over the FPMD one. The guidelines proposed here mitigate the creation difficulty of the ANN potential, and a lot of FPMD data sleeping on the hard disk after the research may be put on the front stage again.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
梦游菌完成签到 ,获得积分10
1秒前
眼睛大的寄容完成签到 ,获得积分10
5秒前
zhangjianzeng完成签到 ,获得积分10
5秒前
俞安珊完成签到,获得积分10
12秒前
十月的天空完成签到,获得积分10
18秒前
老福贵儿应助科研通管家采纳,获得10
24秒前
慕青应助科研通管家采纳,获得10
24秒前
所所应助科研通管家采纳,获得30
24秒前
kanglan完成签到,获得积分10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
尉迟希望应助科研通管家采纳,获得10
24秒前
一路硕博应助科研通管家采纳,获得30
24秒前
田様应助科研通管家采纳,获得10
24秒前
Hello应助科研通管家采纳,获得10
24秒前
老福贵儿应助科研通管家采纳,获得10
24秒前
天天快乐应助科研通管家采纳,获得10
24秒前
小马甲应助科研通管家采纳,获得10
24秒前
Hanoi347应助科研通管家采纳,获得10
25秒前
momo应助科研通管家采纳,获得10
25秒前
打打应助科研通管家采纳,获得10
25秒前
小马甲应助科研通管家采纳,获得10
25秒前
大模型应助科研通管家采纳,获得10
25秒前
领导范儿应助科研通管家采纳,获得10
25秒前
25秒前
故酒应助科研通管家采纳,获得10
25秒前
lixiniverson完成签到 ,获得积分0
28秒前
韩大帅完成签到,获得积分20
29秒前
huhuhu完成签到,获得积分10
30秒前
十月完成签到 ,获得积分10
31秒前
GB完成签到 ,获得积分10
33秒前
35秒前
TanXu完成签到 ,获得积分10
40秒前
韩大帅发布了新的文献求助20
41秒前
智叟先生完成签到 ,获得积分10
43秒前
笨笨听枫完成签到 ,获得积分10
45秒前
文曲星本星完成签到,获得积分10
47秒前
CandyJump完成签到,获得积分10
48秒前
Robin95完成签到 ,获得积分10
50秒前
热心易绿完成签到 ,获得积分10
53秒前
许安完成签到,获得积分10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498664
求助须知:如何正确求助?哪些是违规求助? 4595831
关于积分的说明 14449958
捐赠科研通 4528777
什么是DOI,文献DOI怎么找? 2481732
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438563