清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Guidelines for creating artificial neural network empirical interatomic potential from first-principles molecular dynamics data under specific conditions and its application to α-Ag2Se

分子动力学 计算机科学 原子间势 人工神经网络 趋同(经济学) 加速度 比例(比率) 材料科学 统计物理学 人工智能 物理 计算化学 化学 量子力学 经济增长 经济 经典力学
作者
Kohei Shimamura,Shogo Fukushima,Akihide Koura,Fuyuki Shimojo,Masaaki Misawa,Rajiv K. Kalia,Aiichiro Nakano,Priya Vashishta,Takashi Matsubara,Shigenori Tanaka
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:151 (12) 被引量:20
标识
DOI:10.1063/1.5116420
摘要

First-principles molecular dynamics (FPMD) simulations are highly accurate, but due to their high calculation cost, the computational scale is often limited to hundreds of atoms and few picoseconds under specific temperature and pressure conditions. We present here the guidelines for creating artificial neural network empirical interatomic potential (ANN potential) trained with such a limited FPMD data, which can perform long time scale MD simulations at least under the same conditions. The FPMD data for training are prepared on the basis of the convergence of radial distribution function [g(r)]. While training the ANN using total energy and atomic forces of the FPMD data, the error of pressure is also monitored and minimized. To create further robust potential, we add a small amount of FPMD data to reproduce the interaction between two atoms that are close to each other. ANN potentials for α-Ag2Se were created as an application example, and it has been confirmed that not only g(r) and mean square displacements but also the specific heat requiring a long time scale simulation matched the FPMD and the experimental values. In addition, the MD simulation using the ANN potential achieved over 104 acceleration over the FPMD one. The guidelines proposed here mitigate the creation difficulty of the ANN potential, and a lot of FPMD data sleeping on the hard disk after the research may be put on the front stage again.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
null应助科研通管家采纳,获得10
7秒前
null应助科研通管家采纳,获得10
7秒前
冷傲半邪完成签到,获得积分10
10秒前
19秒前
米歇尔发布了新的文献求助10
25秒前
灿烂而孤独的八戒完成签到 ,获得积分0
27秒前
33秒前
JamesPei应助耕牛热采纳,获得10
44秒前
两个榴莲完成签到,获得积分0
48秒前
57秒前
耕牛热完成签到,获得积分10
1分钟前
Veson发布了新的文献求助10
1分钟前
hwen1998完成签到 ,获得积分10
1分钟前
haihuhu完成签到 ,获得积分10
1分钟前
wanci应助Una采纳,获得10
1分钟前
1分钟前
ww完成签到,获得积分10
1分钟前
Una发布了新的文献求助10
1分钟前
5k全完成签到 ,获得积分10
1分钟前
Veson完成签到,获得积分10
1分钟前
null应助科研通管家采纳,获得10
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
hunajx完成签到,获得积分10
2分钟前
2分钟前
小米辣发布了新的文献求助30
2分钟前
2分钟前
Vicky完成签到 ,获得积分10
2分钟前
享受不良诱惑完成签到,获得积分10
2分钟前
Lny应助wuran采纳,获得10
3分钟前
anan完成签到,获得积分10
3分钟前
科研通AI2S应助wuran采纳,获得10
3分钟前
我是老大应助科研通管家采纳,获得10
4分钟前
激动的似狮完成签到,获得积分10
4分钟前
顾矜应助米歇尔采纳,获得10
4分钟前
毛毛完成签到,获得积分10
4分钟前
4分钟前
糟糕的翅膀完成签到,获得积分10
4分钟前
米歇尔发布了新的文献求助10
4分钟前
米歇尔完成签到,获得积分20
4分钟前
样样发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4569362
求助须知:如何正确求助?哪些是违规求助? 3991503
关于积分的说明 12355889
捐赠科研通 3663771
什么是DOI,文献DOI怎么找? 2019065
邀请新用户注册赠送积分活动 1053532
科研通“疑难数据库(出版商)”最低求助积分说明 941100