Guidelines for creating artificial neural network empirical interatomic potential from first-principles molecular dynamics data under specific conditions and its application to α-Ag2Se

分子动力学 计算机科学 原子间势 人工神经网络 趋同(经济学) 加速度 比例(比率) 材料科学 统计物理学 人工智能 物理 计算化学 化学 量子力学 经济增长 经济 经典力学
作者
Kohei Shimamura,Shogo Fukushima,Akihide Koura,Fuyuki Shimojo,Masaaki Misawa,Rajiv K. Kalia,Aiichiro Nakano,Priya Vashishta,Takashi Matsubara,Shigenori Tanaka
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:151 (12) 被引量:20
标识
DOI:10.1063/1.5116420
摘要

First-principles molecular dynamics (FPMD) simulations are highly accurate, but due to their high calculation cost, the computational scale is often limited to hundreds of atoms and few picoseconds under specific temperature and pressure conditions. We present here the guidelines for creating artificial neural network empirical interatomic potential (ANN potential) trained with such a limited FPMD data, which can perform long time scale MD simulations at least under the same conditions. The FPMD data for training are prepared on the basis of the convergence of radial distribution function [g(r)]. While training the ANN using total energy and atomic forces of the FPMD data, the error of pressure is also monitored and minimized. To create further robust potential, we add a small amount of FPMD data to reproduce the interaction between two atoms that are close to each other. ANN potentials for α-Ag2Se were created as an application example, and it has been confirmed that not only g(r) and mean square displacements but also the specific heat requiring a long time scale simulation matched the FPMD and the experimental values. In addition, the MD simulation using the ANN potential achieved over 104 acceleration over the FPMD one. The guidelines proposed here mitigate the creation difficulty of the ANN potential, and a lot of FPMD data sleeping on the hard disk after the research may be put on the front stage again.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
英俊的铭应助生动友容采纳,获得10
2秒前
ding应助山花花采纳,获得10
3秒前
sw123完成签到 ,获得积分10
4秒前
周文凯发布了新的文献求助10
5秒前
5秒前
5秒前
7秒前
啊啊啊啊发布了新的文献求助10
7秒前
CipherSage应助怂宝儿采纳,获得10
8秒前
忧郁忆枫完成签到 ,获得积分10
8秒前
小甑完成签到,获得积分10
9秒前
香蕉诗蕊举报积极晓山求助涉嫌违规
9秒前
9秒前
诺hn完成签到 ,获得积分10
9秒前
酷波er应助伯克利芙蓉王采纳,获得10
10秒前
所所应助包振宏采纳,获得10
10秒前
朱加德发布了新的文献求助10
10秒前
樱桃发布了新的文献求助10
12秒前
学术妙蛙种子完成签到,获得积分20
12秒前
蔡丽发布了新的文献求助10
14秒前
15秒前
顺顺发布了新的文献求助10
15秒前
科目三应助樱桃采纳,获得10
19秒前
袁瑞发布了新的文献求助10
20秒前
akko完成签到,获得积分10
20秒前
珺珺要努力呀完成签到 ,获得积分10
22秒前
yfxf应助akko采纳,获得10
24秒前
25秒前
25秒前
顾矜应助朱加德采纳,获得10
26秒前
27秒前
量子星尘发布了新的文献求助10
27秒前
宋二庆完成签到,获得积分10
28秒前
青火完成签到,获得积分10
29秒前
zj发布了新的文献求助10
30秒前
dzjin发布了新的文献求助10
31秒前
少女情怀总是梦完成签到,获得积分10
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538014
求助须知:如何正确求助?哪些是违规求助? 4625297
关于积分的说明 14595495
捐赠科研通 4565819
什么是DOI,文献DOI怎么找? 2502789
邀请新用户注册赠送积分活动 1481135
关于科研通互助平台的介绍 1452360