Theoretical Insights into Superior Nitrate Reduction to Ammonia Performance of Copper Catalysts

化学 催化作用 氨生产 无机化学 吸附 反应速率 金属 物理化学 有机化学
作者
Tao Hu,Changhong Wang,Mengting Wang,Chang Ming Li,Chunxian Guo
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:11 (23): 14417-14427 被引量:297
标识
DOI:10.1021/acscatal.1c03666
摘要

Nitrate reduction to ammonia (NRA) is critical and attractive for environmental remediation and energy conservation. Copper represents one of the most promising non-noble-metal NRA electrocatalysts while its intrinsic catalytic activity of facets and pH influence remain unclear. Using density functional theory calculations, nitrate reduction to ammonia pathways are evaluated on low-index crystal surfaces, Cu(111), Cu(100), and Cu(110), at different pH. Systematic thermodynamic and kinetic analysis indicates that the pathway NO3– → *NO3 → *NO2 → *NO → *NOH → *NHOH → *NH → *NH2 → *NH3 → NH3(g) is the most probable in all pH ranges, ending a long-standing debate on NRA pathways. Both the catalytic deoxygenation and hydrogenation processes in NRA are substantially affected by pH. Thus, the rate-determining steps and overpotentials exhibit pH-dependent characteristics. Besides, it is found that the pH influences the competition between the hydrogen evolution reaction (HER) and NRA. By considering NRA and HER on different surfaces, we found that Cu(100) and Cu(111) contribute most to NRA other than Cu(110). Specifically, in near-neutral and alkaline environments, Cu(111) exhibits the best NO3– to NH3 performance, while Cu(100) is more effective in a strong acidic environment. This result rationalizes recent experimental observations. The NRA activity differences of copper surfaces are attributed to the local coordination environment and electronic states of surface atoms. Thanks to a stereospecific Cu–Cu couple, both strong *NOH adsorption and weak *NH3 adsorption are realized on Cu(111) and Cu(100), facilitating superior NRA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wuin发布了新的文献求助10
1秒前
苹果学姐发布了新的文献求助10
2秒前
完美世界应助liiy采纳,获得10
2秒前
JamesPei应助拉格朗日柴犬采纳,获得10
2秒前
搜集达人应助hd采纳,获得10
3秒前
闪闪凡霜完成签到,获得积分10
3秒前
3秒前
cmmnzjsj完成签到,获得积分20
5秒前
NexusExplorer应助gsgg采纳,获得10
6秒前
深情安青应助飞天817采纳,获得10
6秒前
6秒前
6秒前
台琳玉完成签到,获得积分10
7秒前
呆呆熊完成签到,获得积分10
7秒前
诚心傲之完成签到,获得积分10
7秒前
8秒前
小学虫应助Rollei采纳,获得10
8秒前
鲤鱼鸽子应助Rollei采纳,获得10
8秒前
鲤鱼鸽子应助Rollei采纳,获得10
8秒前
鲤鱼鸽子应助Rollei采纳,获得10
8秒前
希望天下0贩的0应助Rollei采纳,获得10
8秒前
可爱的函函应助Rollei采纳,获得10
8秒前
cmmnzjsj发布了新的文献求助10
8秒前
CodeCraft应助yuhong采纳,获得10
8秒前
传奇3应助奥利安费采纳,获得10
9秒前
9秒前
尹恩惠发布了新的文献求助10
10秒前
10秒前
wy.he完成签到,获得积分0
11秒前
11秒前
Ali关闭了Ali文献求助
11秒前
11秒前
淡淡晓夏完成签到,获得积分20
12秒前
一击必中发布了新的文献求助10
13秒前
飘逸青槐发布了新的文献求助30
13秒前
小巧碧凡发布了新的文献求助10
13秒前
14秒前
青山发布了新的文献求助10
14秒前
兮豫完成签到 ,获得积分10
14秒前
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961496
求助须知:如何正确求助?哪些是违规求助? 3507837
关于积分的说明 11138394
捐赠科研通 3240311
什么是DOI,文献DOI怎么找? 1790903
邀请新用户注册赠送积分活动 872636
科研通“疑难数据库(出版商)”最低求助积分说明 803288