Virtual Contrast-Enhanced Magnetic Resonance Images Synthesis for Patients With Nasopharyngeal Carcinoma Using Multimodality-Guided Synergistic Neural Network

医学 多模态 磁共振成像 鼻咽癌 对比度(视觉) 人工神经网络 人工智能 放射科 放射治疗 计算机科学 万维网
作者
Wen Li,Haonan Xiao,Tian Li,Ge Ren,Saikit Lam,Xinzhi Teng,Chenyang Liu,Jiang Zhang,Francis Kar-ho Lee,Kwok‐Hung Au,Victor Lee,Amy Tien Yee Chang,Jing Cai
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:112 (4): 1033-1044 被引量:40
标识
DOI:10.1016/j.ijrobp.2021.11.007
摘要

To investigate a novel deep-learning network that synthesizes virtual contrast-enhanced T1-weighted (vceT1w) magnetic resonance images (MRI) from multimodality contrast-free MRI for patients with nasopharyngeal carcinoma (NPC).This article presents a retrospective analysis of multiparametric MRI, with and without contrast enhancement by gadolinium-based contrast agents (GBCAs), obtained from 64 biopsy-proven cases of NPC treated at Hong Kong Queen Elizabeth Hospital. A multimodality-guided synergistic neural network (MMgSN-Net) was developed to leverage complementary information between contrast-free T1-weighted and T2-weighted MRI for vceT1w MRI synthesis. Thirty-five patients were randomly selected for model training, whereas 29 patients were selected for model testing. The synthetic images generated from MMgSN-Net were quantitatively evaluated against real GBCA-enhanced T1-weighted MRI using a series of statistical evaluating metrics, which include mean absolute error (MAE), mean squared error (MSE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR). Qualitative visual assessment between the real and synthetic MRI was also performed. Effectiveness of our MMgSN-Net was compared with 3 state-of-the-art deep-learning networks, including U-Net, CycleGAN, and Hi-Net, both quantitatively and qualitatively. Furthermore, a Turing test was performed by 7 board-certified radiation oncologists from 4 hospitals for assessing authenticity of the synthesized vceT1w MRI against the real GBCA-enhanced T1-weighted MRI.Results from the quantitative evaluations demonstrated that our MMgSN-Net outperformed U-Net, CycleGAN and Hi-Net, yielding the top-ranked scores in averaged MAE (44.50 ± 13.01), MSE (9193.22 ± 5405.00), SSIM (0.887 ± 0.042), and PSNR (33.17 ± 2.14). Furthermore, the mean accuracy of the 7 readers in the Turing tests was determined to be 49.43%, equivalent to random guessing (ie, 50%) in distinguishing between real GBCA-enhanced T1-weighted and synthetic vceT1w MRI. Qualitative evaluation indicated that MMgSN-Net gave the best approximation to the ground-truth images, particularly in visualization of tumor-to-muscle interface and the intratumor texture information.Our MMgSN-Net was capable of synthesizing highly realistic vceT1w MRI that outperformed the 3 comparable state-of-the-art networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心灵美的幼蓉完成签到,获得积分10
刚刚
充电宝应助hhh采纳,获得10
刚刚
哔大校长完成签到,获得积分10
1秒前
希望天下0贩的0应助蛋鹅采纳,获得10
1秒前
深情安青应助yx_cheng采纳,获得10
1秒前
顺利静竹完成签到,获得积分20
2秒前
zi发布了新的文献求助10
2秒前
lx完成签到 ,获得积分10
2秒前
2秒前
3秒前
哔大校长发布了新的文献求助10
4秒前
4秒前
黄医生发布了新的文献求助10
6秒前
brwen完成签到,获得积分10
6秒前
8秒前
8秒前
赘婿应助zjkzh采纳,获得10
8秒前
10秒前
小M完成签到,获得积分10
11秒前
无私的芹应助ernest采纳,获得10
11秒前
ning22宁完成签到 ,获得积分10
12秒前
18922406869发布了新的文献求助30
12秒前
13秒前
李爱国应助慵懒的树采纳,获得10
14秒前
谢某某102097完成签到,获得积分10
14秒前
hhh发布了新的文献求助10
15秒前
kui水买完成签到,获得积分10
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
蛋鹅完成签到,获得积分10
17秒前
18秒前
18秒前
彭于晏应助15136780701采纳,获得10
19秒前
Kaka发布了新的文献求助10
20秒前
gfhdf完成签到,获得积分10
20秒前
所所应助GQ采纳,获得10
21秒前
肖小张完成签到,获得积分20
21秒前
蛋鹅发布了新的文献求助10
22秒前
新城吴发布了新的文献求助10
22秒前
zjkzh发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952693
求助须知:如何正确求助?哪些是违规求助? 3498194
关于积分的说明 11090590
捐赠科研通 3228748
什么是DOI,文献DOI怎么找? 1785066
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801350