Virtual Contrast-Enhanced Magnetic Resonance Images Synthesis for Patients With Nasopharyngeal Carcinoma Using Multimodality-Guided Synergistic Neural Network

医学 多模态 磁共振成像 鼻咽癌 对比度(视觉) 人工神经网络 人工智能 放射科 放射治疗 计算机科学 万维网
作者
Wen Li,Haonan Xiao,Tian Li,Ge Ren,Saikit Lam,Xinzhi Teng,Chenyang Liu,Jiang Zhang,Francis Kar-Ho Lee,Kwok‐Hung Au,Victor Lee,Amy Tien Yee Chang,Jing Cai
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:112 (4): 1033-1044 被引量:37
标识
DOI:10.1016/j.ijrobp.2021.11.007
摘要

To investigate a novel deep-learning network that synthesizes virtual contrast-enhanced T1-weighted (vceT1w) magnetic resonance images (MRI) from multimodality contrast-free MRI for patients with nasopharyngeal carcinoma (NPC).This article presents a retrospective analysis of multiparametric MRI, with and without contrast enhancement by gadolinium-based contrast agents (GBCAs), obtained from 64 biopsy-proven cases of NPC treated at Hong Kong Queen Elizabeth Hospital. A multimodality-guided synergistic neural network (MMgSN-Net) was developed to leverage complementary information between contrast-free T1-weighted and T2-weighted MRI for vceT1w MRI synthesis. Thirty-five patients were randomly selected for model training, whereas 29 patients were selected for model testing. The synthetic images generated from MMgSN-Net were quantitatively evaluated against real GBCA-enhanced T1-weighted MRI using a series of statistical evaluating metrics, which include mean absolute error (MAE), mean squared error (MSE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR). Qualitative visual assessment between the real and synthetic MRI was also performed. Effectiveness of our MMgSN-Net was compared with 3 state-of-the-art deep-learning networks, including U-Net, CycleGAN, and Hi-Net, both quantitatively and qualitatively. Furthermore, a Turing test was performed by 7 board-certified radiation oncologists from 4 hospitals for assessing authenticity of the synthesized vceT1w MRI against the real GBCA-enhanced T1-weighted MRI.Results from the quantitative evaluations demonstrated that our MMgSN-Net outperformed U-Net, CycleGAN and Hi-Net, yielding the top-ranked scores in averaged MAE (44.50 ± 13.01), MSE (9193.22 ± 5405.00), SSIM (0.887 ± 0.042), and PSNR (33.17 ± 2.14). Furthermore, the mean accuracy of the 7 readers in the Turing tests was determined to be 49.43%, equivalent to random guessing (ie, 50%) in distinguishing between real GBCA-enhanced T1-weighted and synthetic vceT1w MRI. Qualitative evaluation indicated that MMgSN-Net gave the best approximation to the ground-truth images, particularly in visualization of tumor-to-muscle interface and the intratumor texture information.Our MMgSN-Net was capable of synthesizing highly realistic vceT1w MRI that outperformed the 3 comparable state-of-the-art networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rcheap完成签到,获得积分20
4秒前
4秒前
4秒前
5秒前
5秒前
直率芮完成签到 ,获得积分10
5秒前
8秒前
小明发布了新的文献求助50
9秒前
10秒前
10秒前
棉棉发布了新的文献求助10
10秒前
烟花应助语嘘嘘采纳,获得10
10秒前
感动水杯发布了新的文献求助10
10秒前
怡然诗珊发布了新的文献求助20
14秒前
酷波er应助KitasanHN采纳,获得30
18秒前
南吕完成签到,获得积分10
18秒前
20秒前
蛋炒饭香喷喷儿完成签到,获得积分10
20秒前
21秒前
21秒前
22秒前
Orange应助哦哦采纳,获得10
25秒前
26秒前
poyo发布了新的文献求助10
27秒前
28秒前
huhu完成签到,获得积分10
29秒前
怡然诗珊完成签到,获得积分20
29秒前
30秒前
小明完成签到,获得积分10
31秒前
左左发布了新的文献求助10
31秒前
31秒前
长孙寻桃发布了新的文献求助10
33秒前
33秒前
小六发布了新的文献求助10
33秒前
rong完成签到 ,获得积分10
35秒前
KitasanHN发布了新的文献求助30
35秒前
晨云发布了新的文献求助10
36秒前
37秒前
37秒前
40秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316201
求助须知:如何正确求助?哪些是违规求助? 2947786
关于积分的说明 8538590
捐赠科研通 2623888
什么是DOI,文献DOI怎么找? 1435612
科研通“疑难数据库(出版商)”最低求助积分说明 665632
邀请新用户注册赠送积分活动 651457