已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An adaptive spot placement method on Cartesian grid for pencil beam scanning proton therapy

质子疗法 笛卡尔坐标系 网格 计算机科学 规则网格 稳健性(进化) 光学 物理 数学 梁(结构) 几何学 生物化学 基因 化学
作者
Bo-Wen Lin,Shujun Fu,Yuting Lin,Ronny L. Rotondo,Weizhang Huang,Harold H Li,Ronald C. Chen,Hao Gao
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (23): 235012-235012 被引量:11
标识
DOI:10.1088/1361-6560/ac3b65
摘要

Pencil beam scanning proton radiotherapy (RT) offers flexible proton spot placement near treatment targets for delivering tumoricidal radiation dose to tumor targets while sparing organs-at-risk. Currently the spot placement is mostly based on a non-adaptive sampling (NS) strategy on a Cartesian grid. However, the spot density or spacing during NS is a constant for the Cartesian grid that is independent of the geometry of tumor targets, and thus can be suboptimal in terms of plan quality (e.g. target dose conformality) and delivery efficiency (e.g. number of spots). This work develops an adaptive sampling (AS) spot placement method on the Cartesian grid that fully accounts for the geometry of tumor targets. Compared with NS, AS places (1) a relatively fine grid of spots at the boundary of tumor targets to account for the geometry of tumor targets and treatment uncertainties (setup and range uncertainty) for improving dose conformality, and (2) a relatively coarse grid of spots in the interior of tumor targets to reduce the number of spots for improving delivery efficiency and robustness to the minimum-minitor-unit (MMU) constraint. The results demonstrate that (1) AS achieved comparable plan quality with NS for regular MMU and substantially improved plan quality from NS for large MMU, using merely about 10% of spots from NS, where AS was derived from the same Cartesian grid as NS; (2) on the other hand, with similar number of spots, AS had better plan quality than NS consistently for regular and large MMU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助贰叁采纳,获得10
1秒前
wanci应助im红牛采纳,获得10
3秒前
鱼鱼完成签到 ,获得积分10
4秒前
我要发sci发布了新的文献求助10
6秒前
8秒前
9秒前
gzy完成签到,获得积分20
11秒前
li关注了科研通微信公众号
11秒前
12秒前
我要发sci完成签到,获得积分20
14秒前
慶1发布了新的文献求助10
14秒前
14秒前
im红牛完成签到,获得积分10
14秒前
善学以致用应助我要发sci采纳,获得10
16秒前
酷波er应助慶1采纳,获得10
18秒前
18秒前
im红牛发布了新的文献求助10
19秒前
19秒前
19秒前
21秒前
gzy关注了科研通微信公众号
21秒前
L.YL发布了新的文献求助10
24秒前
星辰大海应助ffffmz采纳,获得10
24秒前
25秒前
leoMessi发布了新的文献求助10
25秒前
Venus发布了新的文献求助10
26秒前
玉面手雷王完成签到,获得积分10
26秒前
26秒前
ZZY完成签到 ,获得积分10
27秒前
小药丸完成签到,获得积分10
29秒前
29秒前
归尘发布了新的文献求助10
30秒前
30秒前
CipherSage应助hyyyh采纳,获得10
30秒前
31秒前
可爱的函函应助dingdingding采纳,获得10
31秒前
Wxy发布了新的文献求助10
31秒前
34秒前
li发布了新的文献求助10
35秒前
36秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3720930
求助须知:如何正确求助?哪些是违规求助? 3266977
关于积分的说明 9946569
捐赠科研通 2980631
什么是DOI,文献DOI怎么找? 1634973
邀请新用户注册赠送积分活动 776226
科研通“疑难数据库(出版商)”最低求助积分说明 746180