锂(药物)
阴极
材料科学
电化学
试剂
电极
储能
复合数
化学工程
化学
物理化学
复合材料
热力学
有机化学
物理
医学
工程类
内分泌学
功率(物理)
作者
Jie Li,Bin Zhu,Shihao Li,Dapeng Wang,Wei Zhang,Yangyang Xie,Jing Fang,Bo Hong,Yanqing Lai,Zhian Zhang
出处
期刊:Journal of The Electrochemical Society
[The Electrochemical Society]
日期:2021-07-29
卷期号:168 (8): 080510-080510
被引量:26
标识
DOI:10.1149/1945-7111/ac18e1
摘要
Li5FeO4, as a high-capacity built-in pre-lithiation reagent, has attracted wide interest due to its attractive characteristics, such as extremely higher capacity and energy density, low cost, and environmental friendliness. However, the preparation technology of high-stability Li5FeO4 remains a great challenge. Here, we report a highly air-stable Li5FeO4 cathode pre-lithiation reagent by the solid-phase method. The Li5FeO4 is coated with Li6CoO4 (Li6CoO4@Li5FeO4, referred to as LCO@LFO), which can effectively improve the stability of Li5FeO4 materials under ambient atmosphere and significantly enhance the electrochemical performance. The material possesses an initial charge capacity of 518.8mAh g−1 when charged to 4.5 V and exhibits good air-filled capacity retention. Besides, the LiNi0.8Co0.1Mn0.1O2 (NCM811) full-cell with 5 wt% LCO@LFO additive has an initial discharging capacity of 205 mAh g−1 in the charge and discharge interval of 2.0 V–4.5 V (vs Li+/Li), respectively, higher than the initial discharging capacity of 166.5 mAh g−1 of pure NCM811. The reversible specific capacity of the NCM811 with LCO@LFO cathode in the full cell can be increased by 8.8%, which is equivalent to a 14.35% increase in energy density. Our research report opens a door for the commercial application of LCO@LFO, a high-stability cathode composite pre-lithiation reagent.
科研通智能强力驱动
Strongly Powered by AbleSci AI