量子产额
荧光团
材料科学
荧光
光致发光
光化学
氢键
猝灭(荧光)
分子间力
苯酚
分子
光电子学
有机化学
化学
光学
物理
作者
Bo‐Hyun Kim,Wontae Kim,Taemin Kim,Byoung Min Ko,Soon‐Jik Hong,Kangtaek Lee,Jinsang Kim,Sung Ho Song,Sunjong Lee
标识
DOI:10.1021/acsami.1c15385
摘要
It is generally accepted that while efficient suppression of molecular vibration is inevitable for purely organic phosphors due to their long emission lifetime in the regime of 1 ms or longer, fluorophores having a lifetime in the nanoseconds regime are not sensitive to collisional quenching. Here, however, we demonstrate that a fluorophore, 2,5-bis(hexyloxy)terephthaldehyde (BHTA), capable of having hydrogen bonding (H bonding) via its two aldehyde groups can have a largely enhanced (450%) fluorescence quantum yield (QY) in amorphous poly(acrylic acid) (PAA) matrix compared to its crystalline powder. We ascribe this enhanced QY to the efficient suppression of molecular vibrations via intermolecular H bonding. We confirm this feasibility by conducting temperature-dependent fluorescence emission intensity measurement. As gaseous phenol can intervene with the H bonding between BHTA and PAA, interestingly, BHTA embedded in PAA can selectively detect gaseous phenol by a sharp fluorescence emission intensity drop that is visibly recognizable by the naked eye. The results provide an insightful molecular design strategy for a fluorophore and fluorometric sensory system design for enhanced photoluminescence QY and convenient detection of various volatile organic compounds.
科研通智能强力驱动
Strongly Powered by AbleSci AI