计算机科学
残余物
遮罩(插图)
光学(聚焦)
人工智能
面部表情
特征(语言学)
表达式(计算机科学)
分割
任务(项目管理)
建筑
网络体系结构
面子(社会学概念)
模式识别(心理学)
语音识别
工程类
社会学
视觉艺术
艺术
哲学
物理
光学
程序设计语言
系统工程
语言学
计算机安全
社会科学
算法
作者
Luan Pham,The Huynh Vu,Tuan Anh Tran
标识
DOI:10.1109/icpr48806.2021.9411919
摘要
Automatic facial expression recognition (FER) has gained much attention due to its applications in human-computer interaction. Among the approaches to improve FER tasks, this paper focuses on deep architecture with the attention mechanism. We propose a novel Masking Idea to boost the performance of CNN in facial expression task. It uses a segmentation network to refine feature maps, enabling the network to focus on relevant information to make correct decisions. In experiments, we combine the ubiquitous Deep Residual Network and Unet-like architecture to produce a Residual Masking Network. The proposed method holds state-of-the-art (SOTA) accuracy on the well-known FER2013 and private VEMO datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI