亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deconfounding Representation Learning Based on User Interactions in Recommendation Systems

计算机科学 推论 杠杆(统计) 代表(政治) 生成模型 用户建模 推荐系统 透视图(图形) 特征学习 过程(计算) 生成语法 人工智能 机器学习 人机交互 用户界面 操作系统 法学 政治 政治学
作者
Junruo Gao,Mengyue Yang,Yuyang Liu,Jun Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 588-599 被引量:6
标识
DOI:10.1007/978-3-030-75765-6_47
摘要

Representation learning provides an attractive solution to capture users' real intents by modeling user interactions in recommendation systems. However, there exist influencing factors called confounders in the process of user interactions. Most traditional methods might ignore these confounders, resulting in learning inaccurate users' intents. To address the issue, we take a new perspective to develop a deconfounding representation learning model named DRL. Concretely, we infer the unobserved confounders existing in the user-item interactions with an inference network. Then we leverage a generative network to generate users' personalized intents that contain no unobserved confounders. In order to learn comprehensive users' intents, we model the user-user interactions by adopting state-of-the-art GNN with a new aggregating strategy. Thus, the users' real intents we learn not only have their own personalized information but also imply the influence of their friends. The results of two real-world experiments demonstrate that our model can learn accurate and comprehensive representations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
yb完成签到,获得积分10
刚刚
莫愁完成签到 ,获得积分10
5秒前
9秒前
Xu槑完成签到,获得积分10
11秒前
LZL完成签到 ,获得积分10
11秒前
16秒前
sonny发布了新的文献求助10
16秒前
方方在努力完成签到,获得积分10
17秒前
19秒前
YWD发布了新的文献求助10
20秒前
左手完成签到,获得积分10
21秒前
sonny完成签到,获得积分10
26秒前
英俊的铭应助星之图采纳,获得10
26秒前
蓝从完成签到,获得积分10
27秒前
热心语山发布了新的文献求助10
27秒前
orixero应助qiii采纳,获得30
32秒前
77发布了新的文献求助20
39秒前
含糊的无声完成签到 ,获得积分10
39秒前
夏日完成签到 ,获得积分10
39秒前
随便吧完成签到 ,获得积分10
42秒前
43秒前
45秒前
SciGPT应助优美翠丝采纳,获得10
45秒前
热心语山完成签到,获得积分10
46秒前
情怀应助hhhh采纳,获得10
47秒前
48秒前
48秒前
52秒前
黑翅鸢完成签到 ,获得积分10
53秒前
再学一分钟完成签到,获得积分10
53秒前
田様应助77采纳,获得10
57秒前
南兮发布了新的文献求助10
59秒前
张晓芮完成签到 ,获得积分10
59秒前
枫叶完成签到 ,获得积分10
1分钟前
Dliii完成签到 ,获得积分10
1分钟前
1分钟前
CodeCraft应助TianxingLiu采纳,获得10
1分钟前
1分钟前
qiii发布了新的文献求助30
1分钟前
kaiii发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493637
求助须知:如何正确求助?哪些是违规求助? 4591684
关于积分的说明 14434378
捐赠科研通 4524067
什么是DOI,文献DOI怎么找? 2478597
邀请新用户注册赠送积分活动 1463596
关于科研通互助平台的介绍 1436439