脑-机接口
运动表象
计算机科学
排名(信息检索)
频道(广播)
人工智能
模式识别(心理学)
脑电图
选择(遗传算法)
相关系数
可视化
约束(计算机辅助设计)
集合(抽象数据类型)
机器学习
相关性
线性判别分析
数据挖掘
数学
心理学
计算机网络
几何学
精神科
程序设计语言
作者
YU Jian-li,Zhu Liang Yu
出处
期刊:Journal of Neural Engineering
[IOP Publishing]
日期:2021-05-26
卷期号:18 (4): 046083-046083
被引量:15
标识
DOI:10.1088/1741-2552/ac0583
摘要
Objective. Many electroencephalogram (EEG)-based brain-computer interface (BCI) systems use a large amount of channels for higher performance, which is time-consuming to set up and inconvenient for practical applications. Finding an optimal subset of channels without compromising the performance is a necessary and challenging task. Approach. In this article, we proposed a cross-correlation based discriminant criterion (XCDC) which assesses the importance of a channel for discriminating the mental states of different motor imagery (MI) tasks. Channels are ranked and selected according to the proposed criterion. The efficacy of XCDC is evaluated on two MI EEG datasets. Main results. On the two datasets, the proposed method reduces the channel number from 71 and 15 to under 18 and 11 respectively without compromising the classification accuracy on unseen data. Under the same constraint of accuracy, the proposed method requires fewer channels than existing channel selection methods based on Pearson's correlation coefficient and common spatial pattern. Visualization of XCDC shows consistent results with neurophysiological principles. Significance. This work proposes a quantitative criterion for assessing and ranking the importance of EEG channels in MI tasks and provides a practical method for selecting the ranked channels in the calibration phase of MI BCI systems, which alleviates the computational complexity and configuration difficulty in the subsequent steps, leading to real-time and more convenient BCI systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI