An electrochemical biosensing platform for progesterone hormone detection using magnetic graphene oxide

石墨烯 材料科学 生物传感器 循环伏安法 介电谱 电化学气体传感器 微分脉冲伏安法 电化学 纳米材料 电极 分析化学(期刊) 检出限 纳米技术 化学 色谱法 物理化学
作者
Disha,Poonam Kumari,Manoj K. Nayak,Parveen Kumar
出处
期刊:Journal of Materials Chemistry B [The Royal Society of Chemistry]
卷期号:9 (26): 5264-5271 被引量:22
标识
DOI:10.1039/d1tb00380a
摘要

In recent times, graphene and its derivatives have turned out to be emerging nanomaterials as transducers to promote electron transport in the field of biosensing using electrochemical techniques. In electrochemical biosensing strategies, key factors such as signal amplification, stability, and sensitivity are necessary for attaining improved sensor performance. In the present work, we synthesized magnetic nanocomposites of graphene oxide and employed them as an electrode material for the loading of bio receptors. The increased surface area with high electric conductance enhanced the sensor's response. The immobilization of progesterone (PGN) antibodies on the modified electrode-sensing surface led to a hindered electron transport that decreased the current response. The developed electrochemical immunosensor assembled successfully in a stepwise process using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) studies along with the electrochemical impedance spectroscopy (EIS) analysis. The current response decreased linearly with the increased progesterone (PGN) concentration range of 0.01 pM-1000 nM with excellent detection limits of 0.15 pM (DPV) and 0.17 pM (CV) under optimal experimental conditions. The label-free electrochemical immunosensor has shown a promising platform for rapid and direct analysis of PGN due to its high sensitivity, selectivity, stability, and repeatability in water samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
韦威风完成签到,获得积分10
1秒前
请叫我风吹麦浪应助cc采纳,获得30
1秒前
所所应助Ll采纳,获得10
1秒前
阳光的道消完成签到,获得积分10
2秒前
2秒前
2秒前
豌豆射手完成签到,获得积分10
3秒前
3秒前
桑桑发布了新的文献求助10
3秒前
领导范儿应助幸福胡萝卜采纳,获得10
4秒前
明理的小甜瓜完成签到,获得积分10
5秒前
5秒前
33333完成签到,获得积分20
5秒前
5秒前
5秒前
756发布了新的文献求助10
5秒前
6秒前
科研通AI5应助GHOST采纳,获得10
6秒前
6秒前
罗实完成签到,获得积分10
7秒前
科研通AI2S应助k7采纳,获得10
7秒前
7秒前
粱自中完成签到,获得积分10
7秒前
luca发布了新的文献求助30
7秒前
7秒前
8秒前
唉呦嘿完成签到,获得积分10
8秒前
dan1029发布了新的文献求助10
9秒前
mc完成签到,获得积分10
9秒前
10秒前
zhaoyue完成签到,获得积分20
10秒前
科研通AI2S应助neil采纳,获得10
11秒前
宇宙无敌完成签到 ,获得积分10
12秒前
SY发布了新的文献求助10
12秒前
Lucas应助小田采纳,获得10
12秒前
叶飞荷发布了新的文献求助10
13秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762