已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Guidelines for the characterization of metal halide nanocrystals

纳米晶 表征(材料科学) 卤化物 材料科学 纳米技术 卤化银 金属 化学 无机化学 冶金 图层(电子)
作者
Luca De Trizio,Ivan Infante,Ahmed L. Abdelhady,Sergio Brovelli,Liberato Manna
出处
期刊:Trends in chemistry [Elsevier BV]
卷期号:3 (8): 631-644 被引量:13
标识
DOI:10.1016/j.trechm.2021.05.001
摘要

Metal halide (MH) nanocrystals are mainly studied for their optical emission properties. Given the several possible variants in terms of structure, composition, and doping, many MH materials (and the corresponding nanocrystals) remain to be uncovered. The soft character of MH lattices renders their characterization rather complicated; hence, a broad array of characterization techniques must be used. This is even more critical when a new compound, with an unknown crystal phase, is made in the form of nanocrystals, thus requiring a structural solution. The combination of various structural, compositional, morphological, spectroscopic, and surface characterization techniques must be complemented by realistic theoretical models of nanocrystals that include explicitly the surface through a correct termination of the material and the presence of ligands, for a complete picture of the system. The family of metal halide (MH) nanocrystal materials is still vastly unexplored and unlocking their full potential is just at the beginning. The understanding and, therefore, the optimization of the properties of these nanoscale systems passes through a series of experimental characterization techniques that span compositional analysis, resolution of unknown (nano)crystal phases, determination of the nanocrystal facets, assessment of ligands bound to the surface, and analysis of the optical properties. All of these characterizations, in turn, require specific advanced tools. The data collected are complemented by computational models to attain a complete picture of a given system. Here, we highlight the best practices for the application of these techniques, also based on the expertise developed in our groups. The family of metal halide (MH) nanocrystal materials is still vastly unexplored and unlocking their full potential is just at the beginning. The understanding and, therefore, the optimization of the properties of these nanoscale systems passes through a series of experimental characterization techniques that span compositional analysis, resolution of unknown (nano)crystal phases, determination of the nanocrystal facets, assessment of ligands bound to the surface, and analysis of the optical properties. All of these characterizations, in turn, require specific advanced tools. The data collected are complemented by computational models to attain a complete picture of a given system. Here, we highlight the best practices for the application of these techniques, also based on the expertise developed in our groups. nanocrystals synthesized in solution comprising an inorganic crystalline core and an organic ligand shell. computational method based on quantum mechanics that provides highly accurate electronic structures and geometries of molecules and bulk materials. comprises the use of electrons in TEM to acquire a diffraction pattern from micro- or nano-objects. this type of synthesis involves the injection of a precursor into a hot mixture comprising a solvent, surfactants, and the remaining precursors. The nucleation and growth of NCs occurs at high temperature after the injection. performed by dispersing MH precursors in polar solvents, which are then injected at room temperature into a mixture of nonpolar solvent and surfactants. The mixing of the two solutions produces an instantaneous condition of supersaturation, which leads to the sudden nucleation of colloidal NCs. a cluster of atoms plus molecules that closely represents a NC characterized in an experiment. The size of this model is such that it can be computed and analyzed with DFT. amphiphilic molecules bound to a nanocrystal’s surface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xixi完成签到 ,获得积分10
刚刚
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得20
3秒前
无花果应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
Mingyue123发布了新的文献求助10
4秒前
6秒前
k.完成签到,获得积分10
7秒前
HongMou完成签到 ,获得积分10
7秒前
喜看财经发布了新的文献求助10
9秒前
Zggzs发布了新的文献求助10
13秒前
科研通AI5应助Zggzs采纳,获得10
17秒前
ZHU完成签到 ,获得积分10
20秒前
Qyyy发布了新的文献求助10
22秒前
充电宝应助Wu采纳,获得10
22秒前
23秒前
科研通AI5应助liu_ps采纳,获得10
23秒前
金金完成签到,获得积分20
25秒前
金金发布了新的文献求助10
27秒前
28秒前
29秒前
无花果应助CYY采纳,获得10
29秒前
30秒前
Sience发布了新的文献求助10
30秒前
31秒前
金木木发布了新的文献求助10
32秒前
ryeong发布了新的文献求助10
33秒前
36秒前
柯亦云发布了新的文献求助10
36秒前
36秒前
Jin发布了新的文献求助10
40秒前
liu_ps发布了新的文献求助10
42秒前
44秒前
未晚完成签到,获得积分10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775825
求助须知:如何正确求助?哪些是违规求助? 3321421
关于积分的说明 10205529
捐赠科研通 3036494
什么是DOI,文献DOI怎么找? 1666173
邀请新用户注册赠送积分活动 797312
科研通“疑难数据库(出版商)”最低求助积分说明 757794