Guidelines for the characterization of metal halide nanocrystals

纳米晶 表征(材料科学) 卤化物 材料科学 纳米技术 卤化银 金属 化学 无机化学 冶金 图层(电子)
作者
Luca De Trizio,Ivan Infante,Ahmed L. Abdelhady,Sergio Brovelli,Liberato Manna
出处
期刊:Trends in chemistry [Elsevier BV]
卷期号:3 (8): 631-644 被引量:14
标识
DOI:10.1016/j.trechm.2021.05.001
摘要

Metal halide (MH) nanocrystals are mainly studied for their optical emission properties. Given the several possible variants in terms of structure, composition, and doping, many MH materials (and the corresponding nanocrystals) remain to be uncovered. The soft character of MH lattices renders their characterization rather complicated; hence, a broad array of characterization techniques must be used. This is even more critical when a new compound, with an unknown crystal phase, is made in the form of nanocrystals, thus requiring a structural solution. The combination of various structural, compositional, morphological, spectroscopic, and surface characterization techniques must be complemented by realistic theoretical models of nanocrystals that include explicitly the surface through a correct termination of the material and the presence of ligands, for a complete picture of the system. The family of metal halide (MH) nanocrystal materials is still vastly unexplored and unlocking their full potential is just at the beginning. The understanding and, therefore, the optimization of the properties of these nanoscale systems passes through a series of experimental characterization techniques that span compositional analysis, resolution of unknown (nano)crystal phases, determination of the nanocrystal facets, assessment of ligands bound to the surface, and analysis of the optical properties. All of these characterizations, in turn, require specific advanced tools. The data collected are complemented by computational models to attain a complete picture of a given system. Here, we highlight the best practices for the application of these techniques, also based on the expertise developed in our groups. The family of metal halide (MH) nanocrystal materials is still vastly unexplored and unlocking their full potential is just at the beginning. The understanding and, therefore, the optimization of the properties of these nanoscale systems passes through a series of experimental characterization techniques that span compositional analysis, resolution of unknown (nano)crystal phases, determination of the nanocrystal facets, assessment of ligands bound to the surface, and analysis of the optical properties. All of these characterizations, in turn, require specific advanced tools. The data collected are complemented by computational models to attain a complete picture of a given system. Here, we highlight the best practices for the application of these techniques, also based on the expertise developed in our groups. nanocrystals synthesized in solution comprising an inorganic crystalline core and an organic ligand shell. computational method based on quantum mechanics that provides highly accurate electronic structures and geometries of molecules and bulk materials. comprises the use of electrons in TEM to acquire a diffraction pattern from micro- or nano-objects. this type of synthesis involves the injection of a precursor into a hot mixture comprising a solvent, surfactants, and the remaining precursors. The nucleation and growth of NCs occurs at high temperature after the injection. performed by dispersing MH precursors in polar solvents, which are then injected at room temperature into a mixture of nonpolar solvent and surfactants. The mixing of the two solutions produces an instantaneous condition of supersaturation, which leads to the sudden nucleation of colloidal NCs. a cluster of atoms plus molecules that closely represents a NC characterized in an experiment. The size of this model is such that it can be computed and analyzed with DFT. amphiphilic molecules bound to a nanocrystal’s surface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细心的日记本完成签到,获得积分10
刚刚
清漪完成签到 ,获得积分10
刚刚
复杂芷容发布了新的文献求助10
刚刚
何以载道完成签到,获得积分10
1秒前
研究生发布了新的文献求助10
1秒前
上官若男应助galvin采纳,获得10
1秒前
大模型应助自信的翩跹采纳,获得10
1秒前
wcj发布了新的文献求助10
2秒前
mumu发布了新的文献求助10
2秒前
Abdory完成签到,获得积分10
2秒前
3秒前
3秒前
深情安青应助mins采纳,获得10
3秒前
3秒前
福征完成签到,获得积分10
4秒前
希望天下0贩的0应助999采纳,获得10
4秒前
张再在完成签到 ,获得积分10
4秒前
4秒前
脑洞疼应助北海采纳,获得10
5秒前
wwww发布了新的文献求助30
5秒前
小马甲应助MXN采纳,获得10
5秒前
Boniu_wang完成签到,获得积分10
6秒前
輓楓完成签到,获得积分10
6秒前
bubble完成签到,获得积分10
6秒前
6秒前
手工猫完成签到,获得积分10
7秒前
7秒前
8秒前
MchemG应助晚星就位采纳,获得10
8秒前
qinqin发布了新的文献求助10
8秒前
9秒前
一起吃火锅完成签到,获得积分10
9秒前
9秒前
梅倪完成签到,获得积分10
9秒前
10秒前
swj发布了新的文献求助10
11秒前
11秒前
桐桐应助稳重的菠萝采纳,获得10
11秒前
GGGGGG果果关注了科研通微信公众号
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958492
求助须知:如何正确求助?哪些是违规求助? 3504758
关于积分的说明 11120028
捐赠科研通 3236093
什么是DOI,文献DOI怎么找? 1788616
邀请新用户注册赠送积分活动 871249
科研通“疑难数据库(出版商)”最低求助积分说明 802625