Wear detection of WC-Cu based impregnated diamond bit matrix based on SEM image and deep learning

磨料 材料科学 扫描电子显微镜 刀具磨损 粘着磨损 钻石 基质(化学分析) 复合材料 冶金 机械加工
作者
Wucheng Sun,Hui Gao,Songcheng Tan,Zhiming Wang,Lijie Duan
出处
期刊:International Journal of Refractory Metals & Hard Materials [Elsevier BV]
卷期号:98: 105530-105530 被引量:17
标识
DOI:10.1016/j.ijrmhm.2021.105530
摘要

The working efficiency and lifetime of impregnated diamond tools are closely related to their wear conditions, among which different wear modes of the metal matrix play an essential role. Since traditional qualitative description cannot meet the requirement of mathematical relationship establishment, a deep learning method, Mask R-CNN, was applied for the quantitative determination of the matrix wear based on scanning electron microscope (SEM) images. A series of WC-Cu based metal matrix composite (MMC) samples had been prepared by hot-pressed sintering, followed by a pin-on-disc wear test to obtain the wear surface images, and the datasets were established based on a normal wear classification principle where classification is of four basic types: abrasive wear, adhesive wear, fatigue wear and corrosion wear (corrosion wear is not involved in this study). After training, validation, and test based on the SEM wear image datasets, the wear segmentation results from the trained model indicated that Mask R-CNN could automatically identify the wear of metal matrices efficiently and accurately, which was in good agreement with the results obtained by manual labelling. By modifying the algorithm codes, the masks of abrasive, adhesive, and fatigue wear were extracted and counted for model effectiveness evaluation. Moreover, the wear condition values (i.e., wear region areas) obtained from extracted masks would be easily applied for correlation analysis between cutting tool qualities and drilling efficiencies in future research as well. In comparison with statistic results by artificial cognition, the three types of wear showed an average wear region mask IoU over 70%, and an average wear region area loss of less than 3%. In the process of wear detection on similar wear images in published work, the Mask R-CNN model also presented good performances. All related codes and SEM image datasets are available at https://github.com/sunwucheng/IDB_matrix_wear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
77完成签到,获得积分10
刚刚
刚刚
十一关注了科研通微信公众号
刚刚
呜呜完成签到,获得积分10
1秒前
大气的fgyyhjj完成签到 ,获得积分10
2秒前
LGJ完成签到,获得积分10
2秒前
SMS完成签到,获得积分10
2秒前
我是老大应助yangzai采纳,获得10
2秒前
领导范儿应助智胜东方朔采纳,获得10
3秒前
HM发布了新的文献求助10
3秒前
3秒前
玲子君发布了新的文献求助10
5秒前
6秒前
yunii完成签到,获得积分10
7秒前
7秒前
babe发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
9秒前
韩凡发布了新的文献求助10
9秒前
YaoHui发布了新的文献求助10
11秒前
Devon完成签到,获得积分10
12秒前
12秒前
英俊的铭应助hh采纳,获得10
12秒前
13秒前
顾矜应助yangzai采纳,获得10
15秒前
15秒前
六点一横发布了新的文献求助10
16秒前
漂亮的毛巾完成签到,获得积分10
16秒前
鱼仔发布了新的文献求助10
17秒前
18秒前
kirito7发布了新的文献求助10
19秒前
AuF完成签到,获得积分10
20秒前
CodeCraft应助duuuuuu采纳,获得10
21秒前
22秒前
六点一横完成签到,获得积分10
22秒前
24秒前
昵称应助Brigitte采纳,获得10
24秒前
十一发布了新的文献求助10
24秒前
rocket发布了新的文献求助10
24秒前
Panini发布了新的文献求助10
24秒前
传奇3应助鲁梦阳采纳,获得30
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961103
求助须知:如何正确求助?哪些是违规求助? 3507388
关于积分的说明 11135834
捐赠科研通 3239867
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803152