Wear detection of WC-Cu based impregnated diamond bit matrix based on SEM image and deep learning

磨料 材料科学 扫描电子显微镜 刀具磨损 粘着磨损 钻石 基质(化学分析) 复合材料 冶金 机械加工
作者
Wucheng Sun,Hui Gao,Songcheng Tan,Zhiming Wang,Lijie Duan
出处
期刊:International Journal of Refractory Metals & Hard Materials [Elsevier]
卷期号:98: 105530-105530 被引量:17
标识
DOI:10.1016/j.ijrmhm.2021.105530
摘要

The working efficiency and lifetime of impregnated diamond tools are closely related to their wear conditions, among which different wear modes of the metal matrix play an essential role. Since traditional qualitative description cannot meet the requirement of mathematical relationship establishment, a deep learning method, Mask R-CNN, was applied for the quantitative determination of the matrix wear based on scanning electron microscope (SEM) images. A series of WC-Cu based metal matrix composite (MMC) samples had been prepared by hot-pressed sintering, followed by a pin-on-disc wear test to obtain the wear surface images, and the datasets were established based on a normal wear classification principle where classification is of four basic types: abrasive wear, adhesive wear, fatigue wear and corrosion wear (corrosion wear is not involved in this study). After training, validation, and test based on the SEM wear image datasets, the wear segmentation results from the trained model indicated that Mask R-CNN could automatically identify the wear of metal matrices efficiently and accurately, which was in good agreement with the results obtained by manual labelling. By modifying the algorithm codes, the masks of abrasive, adhesive, and fatigue wear were extracted and counted for model effectiveness evaluation. Moreover, the wear condition values (i.e., wear region areas) obtained from extracted masks would be easily applied for correlation analysis between cutting tool qualities and drilling efficiencies in future research as well. In comparison with statistic results by artificial cognition, the three types of wear showed an average wear region mask IoU over 70%, and an average wear region area loss of less than 3%. In the process of wear detection on similar wear images in published work, the Mask R-CNN model also presented good performances. All related codes and SEM image datasets are available at https://github.com/sunwucheng/IDB_matrix_wear.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kids发布了新的文献求助10
刚刚
1秒前
南高月关注了科研通微信公众号
1秒前
2秒前
2秒前
慕青应助正直小蚂蚁采纳,获得10
3秒前
3秒前
buno应助伍贰肆采纳,获得10
4秒前
4秒前
meredith发布了新的文献求助10
4秒前
5秒前
zzzzz完成签到,获得积分10
5秒前
大模型应助谨慎的擎宇采纳,获得10
5秒前
5秒前
6秒前
Brightan发布了新的文献求助10
6秒前
冷静一一完成签到 ,获得积分20
6秒前
英俊的铭应助mwx采纳,获得10
7秒前
zzzzz发布了新的文献求助10
7秒前
8秒前
duhang完成签到,获得积分10
8秒前
云深不知处完成签到,获得积分10
8秒前
Zhaoyt完成签到,获得积分10
8秒前
zho应助橙子雨采纳,获得10
9秒前
贺呵呵发布了新的文献求助10
9秒前
9秒前
面包发布了新的文献求助10
10秒前
10秒前
天天快乐应助小田采纳,获得10
10秒前
苏谶发布了新的文献求助10
10秒前
12秒前
12秒前
12秒前
苏夏修完成签到,获得积分10
13秒前
敏感板栗发布了新的文献求助10
13秒前
13秒前
egggg完成签到,获得积分10
14秒前
14秒前
彭于晏应助小贾采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589038
求助须知:如何正确求助?哪些是违规求助? 4671863
关于积分的说明 14789964
捐赠科研通 4627369
什么是DOI,文献DOI怎么找? 2532053
邀请新用户注册赠送积分活动 1500695
关于科研通互助平台的介绍 1468382