已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Wear detection of WC-Cu based impregnated diamond bit matrix based on SEM image and deep learning

磨料 材料科学 扫描电子显微镜 刀具磨损 粘着磨损 钻石 基质(化学分析) 复合材料 冶金 机械加工
作者
Wucheng Sun,Hui Gao,Songcheng Tan,Zhiming Wang,Lijie Duan
出处
期刊:International Journal of Refractory Metals & Hard Materials [Elsevier]
卷期号:98: 105530-105530 被引量:17
标识
DOI:10.1016/j.ijrmhm.2021.105530
摘要

The working efficiency and lifetime of impregnated diamond tools are closely related to their wear conditions, among which different wear modes of the metal matrix play an essential role. Since traditional qualitative description cannot meet the requirement of mathematical relationship establishment, a deep learning method, Mask R-CNN, was applied for the quantitative determination of the matrix wear based on scanning electron microscope (SEM) images. A series of WC-Cu based metal matrix composite (MMC) samples had been prepared by hot-pressed sintering, followed by a pin-on-disc wear test to obtain the wear surface images, and the datasets were established based on a normal wear classification principle where classification is of four basic types: abrasive wear, adhesive wear, fatigue wear and corrosion wear (corrosion wear is not involved in this study). After training, validation, and test based on the SEM wear image datasets, the wear segmentation results from the trained model indicated that Mask R-CNN could automatically identify the wear of metal matrices efficiently and accurately, which was in good agreement with the results obtained by manual labelling. By modifying the algorithm codes, the masks of abrasive, adhesive, and fatigue wear were extracted and counted for model effectiveness evaluation. Moreover, the wear condition values (i.e., wear region areas) obtained from extracted masks would be easily applied for correlation analysis between cutting tool qualities and drilling efficiencies in future research as well. In comparison with statistic results by artificial cognition, the three types of wear showed an average wear region mask IoU over 70%, and an average wear region area loss of less than 3%. In the process of wear detection on similar wear images in published work, the Mask R-CNN model also presented good performances. All related codes and SEM image datasets are available at https://github.com/sunwucheng/IDB_matrix_wear.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
姜1完成签到 ,获得积分10
6秒前
短短急个球完成签到,获得积分10
8秒前
医院的孩子完成签到,获得积分10
9秒前
李明完成签到 ,获得积分10
15秒前
17秒前
热心采白完成签到 ,获得积分10
17秒前
大力的含卉完成签到,获得积分10
19秒前
充电宝应助NattyPoe采纳,获得10
19秒前
zhenzhen发布了新的文献求助30
24秒前
风中黎昕完成签到 ,获得积分10
27秒前
种喜欢的花完成签到 ,获得积分10
29秒前
努力毕业的虎三撇完成签到,获得积分10
30秒前
32秒前
三石完成签到 ,获得积分10
35秒前
NattyPoe发布了新的文献求助10
36秒前
宁不言完成签到 ,获得积分10
37秒前
39秒前
39秒前
清秀的仙人掌完成签到,获得积分10
40秒前
45秒前
jiayi发布了新的文献求助10
45秒前
渠建武完成签到 ,获得积分10
46秒前
闻塔发布了新的文献求助10
48秒前
科目三应助wzy采纳,获得10
50秒前
51秒前
畅快枕头完成签到 ,获得积分10
53秒前
自信号厂完成签到 ,获得积分0
54秒前
70发布了新的文献求助10
54秒前
Akim应助右代宫电棍采纳,获得10
55秒前
55秒前
乐观热狗发布了新的文献求助30
57秒前
一一完成签到,获得积分10
58秒前
dengdengdeng完成签到,获得积分10
59秒前
1分钟前
科研通AI6.2应助吴兰田采纳,获得10
1分钟前
清脆大树完成签到,获得积分10
1分钟前
葡萄子完成签到 ,获得积分10
1分钟前
hff发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870512
求助须知:如何正确求助?哪些是违规求助? 6462930
关于积分的说明 15664215
捐赠科研通 4986609
什么是DOI,文献DOI怎么找? 2688903
邀请新用户注册赠送积分活动 1631283
关于科研通互助平台的介绍 1589323