Wear detection of WC-Cu based impregnated diamond bit matrix based on SEM image and deep learning

磨料 材料科学 扫描电子显微镜 刀具磨损 粘着磨损 钻石 基质(化学分析) 复合材料 冶金 机械加工
作者
Wucheng Sun,Hui Gao,Songcheng Tan,Zhiming Wang,Lijie Duan
出处
期刊:International Journal of Refractory Metals & Hard Materials [Elsevier]
卷期号:98: 105530-105530 被引量:17
标识
DOI:10.1016/j.ijrmhm.2021.105530
摘要

The working efficiency and lifetime of impregnated diamond tools are closely related to their wear conditions, among which different wear modes of the metal matrix play an essential role. Since traditional qualitative description cannot meet the requirement of mathematical relationship establishment, a deep learning method, Mask R-CNN, was applied for the quantitative determination of the matrix wear based on scanning electron microscope (SEM) images. A series of WC-Cu based metal matrix composite (MMC) samples had been prepared by hot-pressed sintering, followed by a pin-on-disc wear test to obtain the wear surface images, and the datasets were established based on a normal wear classification principle where classification is of four basic types: abrasive wear, adhesive wear, fatigue wear and corrosion wear (corrosion wear is not involved in this study). After training, validation, and test based on the SEM wear image datasets, the wear segmentation results from the trained model indicated that Mask R-CNN could automatically identify the wear of metal matrices efficiently and accurately, which was in good agreement with the results obtained by manual labelling. By modifying the algorithm codes, the masks of abrasive, adhesive, and fatigue wear were extracted and counted for model effectiveness evaluation. Moreover, the wear condition values (i.e., wear region areas) obtained from extracted masks would be easily applied for correlation analysis between cutting tool qualities and drilling efficiencies in future research as well. In comparison with statistic results by artificial cognition, the three types of wear showed an average wear region mask IoU over 70%, and an average wear region area loss of less than 3%. In the process of wear detection on similar wear images in published work, the Mask R-CNN model also presented good performances. All related codes and SEM image datasets are available at https://github.com/sunwucheng/IDB_matrix_wear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郝宝真发布了新的文献求助10
1秒前
killCooker完成签到,获得积分10
1秒前
liuhaunsheng完成签到,获得积分10
2秒前
xiaomili发布了新的文献求助10
2秒前
犹豫觅翠完成签到,获得积分10
2秒前
4秒前
7秒前
7秒前
zxfaaaaa发布了新的文献求助10
8秒前
乐观德地完成签到 ,获得积分10
8秒前
可爱的函函应助羊羊羊采纳,获得10
9秒前
1234完成签到,获得积分10
9秒前
9秒前
11秒前
wyp发布了新的文献求助10
14秒前
安逸1发布了新的文献求助10
14秒前
14秒前
鱼咬羊完成签到,获得积分10
21秒前
wyp完成签到,获得积分10
26秒前
深情安青应助奥沙利楠采纳,获得10
27秒前
wanci应助安逸1采纳,获得10
28秒前
30秒前
丘比特应助zxfaaaaa采纳,获得10
30秒前
31秒前
HEIKU应助hhhk采纳,获得10
32秒前
AZX加油完成签到,获得积分10
32秒前
诚心凌文完成签到,获得积分10
32秒前
爆米花应助王算法采纳,获得10
33秒前
李雯完成签到,获得积分10
34秒前
35秒前
xs发布了新的文献求助30
36秒前
panda完成签到 ,获得积分20
36秒前
田様应助老实的吐司采纳,获得10
37秒前
王算法完成签到,获得积分10
41秒前
43秒前
天天快乐应助科研通管家采纳,获得10
44秒前
44秒前
华仔应助科研通管家采纳,获得10
44秒前
大个应助科研通管家采纳,获得10
44秒前
zxj完成签到 ,获得积分10
47秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165504
求助须知:如何正确求助?哪些是违规求助? 2816567
关于积分的说明 7913125
捐赠科研通 2476098
什么是DOI,文献DOI怎么找? 1318668
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388