Use of Machine Learning to Develop and Evaluate Models Using Preoperative and Intraoperative Data to Identify Risks of Postoperative Complications

医学 深静脉 围手术期 接收机工作特性 队列 肺栓塞 回顾性队列研究 逻辑回归 外科 血栓形成 内科学
作者
Bing Xue,Dingwen Li,Chenyang Lu,Christopher R. King,Troy S. Wildes,Michael S. Avidan,Thomas Kannampallil,Joanna Abraham
出处
期刊:JAMA network open [American Medical Association]
卷期号:4 (3): e212240-e212240 被引量:203
标识
DOI:10.1001/jamanetworkopen.2021.2240
摘要

Importance

Postoperative complications can significantly impact perioperative care management and planning.

Objectives

To assess machine learning (ML) models for predicting postoperative complications using independent and combined preoperative and intraoperative data and their clinically meaningful model-agnostic interpretations.

Design, Setting, and Participants

This retrospective cohort study assessed 111 888 operations performed on adults at a single academic medical center from June 1, 2012, to August 31, 2016, with a mean duration of follow-up based on the length of postoperative hospital stay less than 7 days. Data analysis was performed from February 1 to September 31, 2020.

Main Outcomes and Measures

Outcomes included 5 postoperative complications: acute kidney injury (AKI), delirium, deep vein thrombosis (DVT), pulmonary embolism (PE), and pneumonia. Patient and clinical characteristics available preoperatively, intraoperatively, and a combination of both were used as inputs for 5 candidate ML models: logistic regression, support vector machine, random forest, gradient boosting tree (GBT), and deep neural network (DNN). Model performance was compared using the area under the receiver operating characteristic curve (AUROC). Model interpretations were generated using Shapley Additive Explanations by transforming model features into clinical variables and representing them as patient-specific visualizations.

Results

A total of 111 888 patients (mean [SD] age, 54.4 [16.8] years; 56 915 [50.9%] female; 82 533 [73.8%] White) were included in this study. The best-performing model for each complication combined the preoperative and intraoperative data with the following AUROCs: pneumonia (GBT), 0.905 (95% CI, 0.903-0.907); AKI (GBT), 0.848 (95% CI, 0.846-0.851); DVT (GBT), 0.881 (95% CI, 0.878-0.884); PE (DNN), 0.831 (95% CI, 0.824-0.839); and delirium (GBT), 0.762 (95% CI, 0.759-0.765). Performance of models that used only preoperative data or only intraoperative data was marginally lower than that of models that used combined data. When adding variables with missing data as input, AUROCs increased from 0.588 to 0.905 for pneumonia, 0.579 to 0.848 for AKI, 0.574 to 0.881 for DVT, 0.5 to 0.831 for PE, and 0.6 to 0.762 for delirium. The Shapley Additive Explanations analysis generated model-agnostic interpretation that illustrated significant clinical contributors associated with risks of postoperative complications.

Conclusions and Relevance

The ML models for predicting postoperative complications with model-agnostic interpretation offer opportunities for integrating risk predictions for clinical decision support. Such real-time clinical decision support can mitigate patient risks and help in anticipatory management for perioperative contingency planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
XX完成签到 ,获得积分10
4秒前
稳重紫蓝完成签到 ,获得积分10
4秒前
4秒前
CyrusSo524完成签到,获得积分10
5秒前
naiyouqiu1989完成签到,获得积分10
5秒前
5秒前
专注鸡完成签到,获得积分10
6秒前
6秒前
6秒前
ddd完成签到,获得积分10
7秒前
cheng完成签到,获得积分10
7秒前
刘珍荣完成签到,获得积分10
8秒前
von完成签到,获得积分10
9秒前
abcd_1067完成签到,获得积分10
9秒前
顺遂完成签到,获得积分10
10秒前
wuhu发布了新的文献求助30
10秒前
烟花应助张jy采纳,获得10
11秒前
Even9完成签到,获得积分0
12秒前
guoguo完成签到,获得积分10
12秒前
开心的日记本完成签到,获得积分20
13秒前
13秒前
13秒前
斯文若魔完成签到,获得积分10
13秒前
丰富的慕卉完成签到,获得积分10
14秒前
温暖的碧蓉完成签到 ,获得积分10
14秒前
丫头完成签到,获得积分10
15秒前
xiang完成签到 ,获得积分10
17秒前
18秒前
18秒前
zgsn完成签到,获得积分10
19秒前
丸子完成签到 ,获得积分10
19秒前
南建丽完成签到,获得积分10
20秒前
热心一一完成签到 ,获得积分10
20秒前
我是老大应助这瓜不卖采纳,获得10
21秒前
21秒前
大模型应助Star1983采纳,获得10
21秒前
加油少年完成签到,获得积分10
21秒前
22秒前
liyun发布了新的文献求助10
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Maneuvering of a Damaged Navy Combatant 650
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770581
求助须知:如何正确求助?哪些是违规求助? 3315521
关于积分的说明 10176879
捐赠科研通 3030682
什么是DOI,文献DOI怎么找? 1663056
邀请新用户注册赠送积分活动 795273
科研通“疑难数据库(出版商)”最低求助积分说明 756705