Use of Machine Learning to Develop and Evaluate Models Using Preoperative and Intraoperative Data to Identify Risks of Postoperative Complications

医学 深静脉 围手术期 接收机工作特性 队列 肺栓塞 回顾性队列研究 逻辑回归 外科 血栓形成 内科学
作者
Bing Xue,Dingwen Li,Chenyang Lu,Christopher R. King,Troy S. Wildes,Michael S. Avidan,Thomas Kannampallil,Joanna Abraham
出处
期刊:JAMA network open [American Medical Association]
卷期号:4 (3): e212240-e212240 被引量:203
标识
DOI:10.1001/jamanetworkopen.2021.2240
摘要

Importance

Postoperative complications can significantly impact perioperative care management and planning.

Objectives

To assess machine learning (ML) models for predicting postoperative complications using independent and combined preoperative and intraoperative data and their clinically meaningful model-agnostic interpretations.

Design, Setting, and Participants

This retrospective cohort study assessed 111 888 operations performed on adults at a single academic medical center from June 1, 2012, to August 31, 2016, with a mean duration of follow-up based on the length of postoperative hospital stay less than 7 days. Data analysis was performed from February 1 to September 31, 2020.

Main Outcomes and Measures

Outcomes included 5 postoperative complications: acute kidney injury (AKI), delirium, deep vein thrombosis (DVT), pulmonary embolism (PE), and pneumonia. Patient and clinical characteristics available preoperatively, intraoperatively, and a combination of both were used as inputs for 5 candidate ML models: logistic regression, support vector machine, random forest, gradient boosting tree (GBT), and deep neural network (DNN). Model performance was compared using the area under the receiver operating characteristic curve (AUROC). Model interpretations were generated using Shapley Additive Explanations by transforming model features into clinical variables and representing them as patient-specific visualizations.

Results

A total of 111 888 patients (mean [SD] age, 54.4 [16.8] years; 56 915 [50.9%] female; 82 533 [73.8%] White) were included in this study. The best-performing model for each complication combined the preoperative and intraoperative data with the following AUROCs: pneumonia (GBT), 0.905 (95% CI, 0.903-0.907); AKI (GBT), 0.848 (95% CI, 0.846-0.851); DVT (GBT), 0.881 (95% CI, 0.878-0.884); PE (DNN), 0.831 (95% CI, 0.824-0.839); and delirium (GBT), 0.762 (95% CI, 0.759-0.765). Performance of models that used only preoperative data or only intraoperative data was marginally lower than that of models that used combined data. When adding variables with missing data as input, AUROCs increased from 0.588 to 0.905 for pneumonia, 0.579 to 0.848 for AKI, 0.574 to 0.881 for DVT, 0.5 to 0.831 for PE, and 0.6 to 0.762 for delirium. The Shapley Additive Explanations analysis generated model-agnostic interpretation that illustrated significant clinical contributors associated with risks of postoperative complications.

Conclusions and Relevance

The ML models for predicting postoperative complications with model-agnostic interpretation offer opportunities for integrating risk predictions for clinical decision support. Such real-time clinical decision support can mitigate patient risks and help in anticipatory management for perioperative contingency planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助傲娇如天采纳,获得10
刚刚
1秒前
可爱的函函应助冯123采纳,获得10
1秒前
slin_sjtu发布了新的文献求助10
2秒前
偷喝汽水发布了新的文献求助10
2秒前
2秒前
安详的母鸡完成签到,获得积分10
2秒前
July完成签到,获得积分0
2秒前
虚心的垣发布了新的文献求助30
3秒前
3秒前
华仔应助qingsyxuan采纳,获得10
3秒前
Orange应助wqy采纳,获得10
4秒前
李健应助采姑娘的小蘑菇采纳,获得10
4秒前
Rheton完成签到,获得积分10
5秒前
6秒前
默默衣发布了新的文献求助10
6秒前
JamesPei应助盼盼527采纳,获得10
6秒前
7秒前
8秒前
9秒前
10秒前
11秒前
蓝莓土豆完成签到 ,获得积分10
11秒前
复杂的映阳完成签到,获得积分20
12秒前
王小冉发布了新的文献求助10
12秒前
王木兮发布了新的文献求助10
13秒前
HY发布了新的文献求助10
13秒前
13秒前
黄同学完成签到,获得积分10
14秒前
搞怪凡波发布了新的文献求助20
14秒前
15秒前
大个应助萌萌采纳,获得10
16秒前
cccttt驳回了Ava应助
16秒前
傲娇如天发布了新的文献求助10
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
威武鸵鸟完成签到,获得积分20
19秒前
科目三应助July采纳,获得10
19秒前
兴奋元灵完成签到,获得积分10
19秒前
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952600
求助须知:如何正确求助?哪些是违规求助? 3498061
关于积分的说明 11090076
捐赠科研通 3228597
什么是DOI,文献DOI怎么找? 1784998
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801344