Learning Efficient Hash Codes for Fast Graph-Based Data Similarity Retrieval

计算机科学 散列函数 图形 理论计算机科学 图形数据库 人工智能 计算机安全
作者
Jinbao Wang,Shuo Xu,Feng Zheng,Ke Lü,Jingkuan Song,Ling Shao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 6321-6334 被引量:6
标识
DOI:10.1109/tip.2021.3093387
摘要

Traditional operations, e.g. graph edit distance (GED), are no longer suitable for processing the massive quantities of graph-structured data now available, due to their irregular structures and high computational complexities. With the advent of graph neural networks (GNNs), the problems of graph representation and graph similarity search have drawn particular attention in the field of computer vision. However, GNNs have been less studied for efficient and fast retrieval after graph representation. To represent graph-based data, and maintain fast retrieval while doing so, we introduce an efficient hash model with graph neural networks (HGNN) for a newly designed task (i.e. fast graph-based data retrieval). Due to its flexibility, HGNN can be implemented in both an unsupervised and supervised manner. Specifically, by adopting a graph neural network and hash learning algorithms, HGNN can effectively learn a similarity-preserving graph representation and compute pair-wise similarity or provide classification via low-dimensional compact hash codes. To the best of our knowledge, our model is the first to address graph hashing representation in the Hamming space. Our experimental results reach comparable prediction accuracy to full-precision methods and can even outperform traditional models in some cases. In real-world applications, using hash codes can greatly benefit systems with smaller memory capacities and accelerate the retrieval speed of graph-structured data. Hence, we believe the proposed HGNN has great potential in further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
含蓄朝雪完成签到,获得积分10
刚刚
东东呀完成签到,获得积分10
刚刚
鸡蛋灌饼完成签到,获得积分10
刚刚
zjzxs完成签到,获得积分10
1秒前
哇咔咔发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
Lucas应助腼腆的又槐采纳,获得10
3秒前
思源应助十二倍根号二采纳,获得10
3秒前
Tao发布了新的文献求助30
3秒前
4秒前
香蕉觅云应助Ayu采纳,获得10
4秒前
在下风爵完成签到,获得积分10
4秒前
嘻嘻嘻发布了新的文献求助50
4秒前
友好锦程完成签到,获得积分20
5秒前
5秒前
5秒前
5秒前
小蘑菇应助Ridley采纳,获得10
5秒前
酷波er应助浮世采纳,获得10
5秒前
munire发布了新的文献求助10
5秒前
5秒前
Zhanghh87完成签到,获得积分10
5秒前
6秒前
哈哈哈发布了新的文献求助10
6秒前
活力成败完成签到,获得积分10
6秒前
biang完成签到,获得积分10
6秒前
罗浩完成签到,获得积分10
6秒前
7秒前
六金发布了新的文献求助10
8秒前
smiling完成签到 ,获得积分10
8秒前
sunshine完成签到,获得积分10
8秒前
123发布了新的文献求助10
8秒前
9秒前
shunshun51213完成签到,获得积分10
9秒前
CodeCraft应助小羊佳佳采纳,获得30
9秒前
TT发布了新的文献求助10
10秒前
Jadedew发布了新的文献求助30
10秒前
李健应助1303883613采纳,获得10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950472
求助须知:如何正确求助?哪些是违规求助? 3495913
关于积分的说明 11079657
捐赠科研通 3226328
什么是DOI,文献DOI怎么找? 1783760
邀请新用户注册赠送积分活动 867823
科研通“疑难数据库(出版商)”最低求助积分说明 800942