Learning Efficient Hash Codes for Fast Graph-Based Data Similarity Retrieval

计算机科学 散列函数 图形 理论计算机科学 图形数据库 人工智能 计算机安全
作者
Jinbao Wang,Shuo Xu,Feng Zheng,Ke Lü,Jingkuan Song,Ling Shao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 6321-6334 被引量:6
标识
DOI:10.1109/tip.2021.3093387
摘要

Traditional operations, e.g. graph edit distance (GED), are no longer suitable for processing the massive quantities of graph-structured data now available, due to their irregular structures and high computational complexities. With the advent of graph neural networks (GNNs), the problems of graph representation and graph similarity search have drawn particular attention in the field of computer vision. However, GNNs have been less studied for efficient and fast retrieval after graph representation. To represent graph-based data, and maintain fast retrieval while doing so, we introduce an efficient hash model with graph neural networks (HGNN) for a newly designed task (i.e. fast graph-based data retrieval). Due to its flexibility, HGNN can be implemented in both an unsupervised and supervised manner. Specifically, by adopting a graph neural network and hash learning algorithms, HGNN can effectively learn a similarity-preserving graph representation and compute pair-wise similarity or provide classification via low-dimensional compact hash codes. To the best of our knowledge, our model is the first to address graph hashing representation in the Hamming space. Our experimental results reach comparable prediction accuracy to full-precision methods and can even outperform traditional models in some cases. In real-world applications, using hash codes can greatly benefit systems with smaller memory capacities and accelerate the retrieval speed of graph-structured data. Hence, we believe the proposed HGNN has great potential in further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
苏源完成签到,获得积分10
1秒前
wu关闭了wu文献求助
1秒前
1秒前
2秒前
2秒前
3秒前
3秒前
3秒前
Shawn完成签到,获得积分10
4秒前
yltstt完成签到,获得积分10
5秒前
李小新发布了新的文献求助10
5秒前
成梦发布了新的文献求助10
6秒前
乐乐应助xuex1采纳,获得10
6秒前
蜂鸟5156发布了新的文献求助10
6秒前
李爱国应助VDC采纳,获得10
7秒前
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
ns完成签到,获得积分10
8秒前
细腻晓露发布了新的文献求助10
8秒前
李本来发布了新的文献求助10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得30
9秒前
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得30
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
NN应助科研通管家采纳,获得10
9秒前
科研通AI5应助幽默的宛白采纳,获得30
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
单薄归尘完成签到 ,获得积分10
9秒前
无花果应助科研通管家采纳,获得30
9秒前
9秒前
LY完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808