Determination of the Geographical Origin of Coffee Beans Using Terahertz Spectroscopy Combined With Machine Learning Methods

主成分分析 人工智能 支持向量机 线性判别分析 模式识别(心理学) 计算机科学 机器学习 卷积神经网络 维数之咒
作者
Si Yang,Chenxi Li,Mei Yang,Wen Liu,Rong Liu,Wenliang Chen,Dong Han,Kexin Xu
出处
期刊:Frontiers in Nutrition [Frontiers Media SA]
卷期号:8 被引量:20
标识
DOI:10.3389/fnut.2021.680627
摘要

Different geographical origins can lead to great variance in coffee quality, taste, and commercial value. Hence, controlling the authenticity of the origin of coffee beans is of great importance for producers and consumers worldwide. In this study, terahertz (THz) spectroscopy, combined with machine learning methods, was investigated as a fast and non-destructive method to classify the geographic origin of coffee beans, comparing it with the popular machine learning methods, including convolutional neural network (CNN), linear discriminant analysis (LDA), and support vector machine (SVM) to obtain the best model. The curse of dimensionality will cause some classification methods which are struggling to train effective models. Thus, principal component analysis (PCA) and genetic algorithm (GA) were applied for LDA and SVM to create a smaller set of features. The first nine principal components (PCs) with an accumulative contribution rate of 99.9% extracted by PCA and 21 variables selected by GA were the inputs of LDA and SVM models. The results demonstrate that the excellent classification (accuracy was 90% in a prediction set) could be achieved using a CNN method. The results also indicate variable selecting as an important step to create an accurate and robust discrimination model. The performances of LDA and SVM algorithms could be improved with spectral features extracted by PCA and GA. The GA-SVM has achieved 75% accuracy in a prediction set, while the SVM and PCA-SVM have achieved 50 and 65% accuracy, respectively. These results demonstrate that THz spectroscopy, together with machine learning methods, is an effective and satisfactory approach for classifying geographical origins of coffee beans, suggesting the techniques to tap the potential application of deep learning in the authenticity of agricultural products while expanding the application of THz spectroscopy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ppc完成签到,获得积分10
1秒前
认真的艳完成签到,获得积分10
2秒前
guard发布了新的文献求助30
2秒前
wss完成签到,获得积分10
3秒前
qw完成签到,获得积分10
3秒前
踏雪飞鸿完成签到,获得积分10
4秒前
半山完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
鱼鱼鱼完成签到,获得积分10
9秒前
成就的寄灵完成签到 ,获得积分10
9秒前
无名完成签到,获得积分0
10秒前
ZHI发布了新的文献求助10
11秒前
cc66发布了新的文献求助10
12秒前
yKkkkkk完成签到,获得积分10
13秒前
烟花应助a成采纳,获得10
13秒前
14秒前
16秒前
shuoliu完成签到 ,获得积分10
18秒前
碧蓝百合完成签到,获得积分10
19秒前
六六发布了新的文献求助10
20秒前
ZHI完成签到,获得积分10
20秒前
123456qi完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
所所应助白日幻想家采纳,获得10
23秒前
三千完成签到,获得积分10
24秒前
26秒前
猕猴桃完成签到,获得积分10
27秒前
xiaolei001应助清晨的小鹿采纳,获得10
27秒前
次时代完成签到,获得积分10
28秒前
29秒前
彩色的誉完成签到,获得积分10
30秒前
kk完成签到,获得积分10
31秒前
猪猪hero发布了新的文献求助30
34秒前
hyPang完成签到,获得积分10
34秒前
34秒前
叶子完成签到,获得积分10
35秒前
善良的碧灵完成签到,获得积分10
35秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789548
求助须知:如何正确求助?哪些是违规求助? 5721282
关于积分的说明 15474982
捐赠科研通 4917368
什么是DOI,文献DOI怎么找? 2646953
邀请新用户注册赠送积分活动 1594561
关于科研通互助平台的介绍 1549099