Determination of the Geographical Origin of Coffee Beans Using Terahertz Spectroscopy Combined With Machine Learning Methods

主成分分析 人工智能 支持向量机 线性判别分析 模式识别(心理学) 计算机科学 机器学习 卷积神经网络 维数之咒
作者
Si Yang,Chenxi Li,Mei Yang,Wen Liu,Rong Liu,Wenliang Chen,Dong Han,Kexin Xu
出处
期刊:Frontiers in Nutrition [Frontiers Media SA]
卷期号:8 被引量:20
标识
DOI:10.3389/fnut.2021.680627
摘要

Different geographical origins can lead to great variance in coffee quality, taste, and commercial value. Hence, controlling the authenticity of the origin of coffee beans is of great importance for producers and consumers worldwide. In this study, terahertz (THz) spectroscopy, combined with machine learning methods, was investigated as a fast and non-destructive method to classify the geographic origin of coffee beans, comparing it with the popular machine learning methods, including convolutional neural network (CNN), linear discriminant analysis (LDA), and support vector machine (SVM) to obtain the best model. The curse of dimensionality will cause some classification methods which are struggling to train effective models. Thus, principal component analysis (PCA) and genetic algorithm (GA) were applied for LDA and SVM to create a smaller set of features. The first nine principal components (PCs) with an accumulative contribution rate of 99.9% extracted by PCA and 21 variables selected by GA were the inputs of LDA and SVM models. The results demonstrate that the excellent classification (accuracy was 90% in a prediction set) could be achieved using a CNN method. The results also indicate variable selecting as an important step to create an accurate and robust discrimination model. The performances of LDA and SVM algorithms could be improved with spectral features extracted by PCA and GA. The GA-SVM has achieved 75% accuracy in a prediction set, while the SVM and PCA-SVM have achieved 50 and 65% accuracy, respectively. These results demonstrate that THz spectroscopy, together with machine learning methods, is an effective and satisfactory approach for classifying geographical origins of coffee beans, suggesting the techniques to tap the potential application of deep learning in the authenticity of agricultural products while expanding the application of THz spectroscopy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西洲发布了新的文献求助10
刚刚
subohr完成签到,获得积分10
1秒前
小白鼠完成签到 ,获得积分10
1秒前
CodeCraft应助大笨鹅之家采纳,获得10
2秒前
111发布了新的文献求助20
3秒前
3秒前
我666完成签到,获得积分10
5秒前
善良的妖妖关注了科研通微信公众号
6秒前
moji发布了新的文献求助10
6秒前
皇上嗳完成签到 ,获得积分10
6秒前
Zenia完成签到 ,获得积分10
7秒前
九月发布了新的文献求助10
9秒前
海蓝云天完成签到,获得积分10
10秒前
10秒前
ZZ0110Z完成签到 ,获得积分10
11秒前
12秒前
快乐若云应助老仙翁采纳,获得10
13秒前
烟花应助隔壁的邻家小兴采纳,获得10
13秒前
13秒前
small发布了新的文献求助20
15秒前
wearelulu完成签到,获得积分10
15秒前
15秒前
16秒前
可颂完成签到 ,获得积分10
16秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
adovj完成签到 ,获得积分10
17秒前
milalala完成签到 ,获得积分10
17秒前
LOTUS完成签到,获得积分10
17秒前
Xin完成签到,获得积分20
18秒前
希望天下0贩的0应助mm采纳,获得10
18秒前
18秒前
Jack发布了新的文献求助10
19秒前
19秒前
19秒前
SciGPT应助幸福小猫采纳,获得10
20秒前
史努比发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
开心绿柳完成签到,获得积分0
21秒前
LOTUS发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733391
求助须知:如何正确求助?哪些是违规求助? 5348377
关于积分的说明 15323747
捐赠科研通 4878502
什么是DOI,文献DOI怎么找? 2621247
邀请新用户注册赠送积分活动 1570363
关于科研通互助平台的介绍 1527280