Determination of the Geographical Origin of Coffee Beans Using Terahertz Spectroscopy Combined With Machine Learning Methods

主成分分析 人工智能 支持向量机 线性判别分析 模式识别(心理学) 计算机科学 机器学习 卷积神经网络 维数之咒
作者
Si Yang,Chenxi Li,Mei Yang,Wen Liu,Rong Liu,Wenliang Chen,Dong Han,Kexin Xu
出处
期刊:Frontiers in Nutrition [Frontiers Media]
卷期号:8 被引量:20
标识
DOI:10.3389/fnut.2021.680627
摘要

Different geographical origins can lead to great variance in coffee quality, taste, and commercial value. Hence, controlling the authenticity of the origin of coffee beans is of great importance for producers and consumers worldwide. In this study, terahertz (THz) spectroscopy, combined with machine learning methods, was investigated as a fast and non-destructive method to classify the geographic origin of coffee beans, comparing it with the popular machine learning methods, including convolutional neural network (CNN), linear discriminant analysis (LDA), and support vector machine (SVM) to obtain the best model. The curse of dimensionality will cause some classification methods which are struggling to train effective models. Thus, principal component analysis (PCA) and genetic algorithm (GA) were applied for LDA and SVM to create a smaller set of features. The first nine principal components (PCs) with an accumulative contribution rate of 99.9% extracted by PCA and 21 variables selected by GA were the inputs of LDA and SVM models. The results demonstrate that the excellent classification (accuracy was 90% in a prediction set) could be achieved using a CNN method. The results also indicate variable selecting as an important step to create an accurate and robust discrimination model. The performances of LDA and SVM algorithms could be improved with spectral features extracted by PCA and GA. The GA-SVM has achieved 75% accuracy in a prediction set, while the SVM and PCA-SVM have achieved 50 and 65% accuracy, respectively. These results demonstrate that THz spectroscopy, together with machine learning methods, is an effective and satisfactory approach for classifying geographical origins of coffee beans, suggesting the techniques to tap the potential application of deep learning in the authenticity of agricultural products while expanding the application of THz spectroscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vvvvvv完成签到,获得积分10
刚刚
刚刚
曾经荔枝完成签到,获得积分10
刚刚
刚刚
yi完成签到,获得积分20
1秒前
所所应助Autumn采纳,获得10
1秒前
qingfeng发布了新的文献求助10
1秒前
朴素的士晋完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
小二郎应助ZXW采纳,获得10
2秒前
Luv_0完成签到,获得积分10
2秒前
科研通AI6应助666采纳,获得10
2秒前
lxq完成签到,获得积分10
3秒前
3秒前
五毛完成签到,获得积分10
3秒前
NexusExplorer应助洁净灵雁采纳,获得10
3秒前
蔺文博完成签到,获得积分10
3秒前
gxch完成签到,获得积分20
3秒前
好多好多鱼完成签到,获得积分10
3秒前
lzcnextdoor发布了新的文献求助10
4秒前
搜集达人应助自然的难摧采纳,获得10
4秒前
研友_VZG7GZ应助han采纳,获得10
5秒前
小黎关注了科研通微信公众号
5秒前
hehsk发布了新的文献求助10
5秒前
主将从现完成签到,获得积分10
5秒前
在水一方应助aaa采纳,获得10
5秒前
Ly完成签到,获得积分10
6秒前
龍焱发布了新的文献求助10
6秒前
qingfeng完成签到,获得积分10
6秒前
虚幻盼晴完成签到,获得积分10
7秒前
yoyoyoyo完成签到,获得积分10
7秒前
望望旺仔牛奶完成签到,获得积分10
7秒前
奇点完成签到 ,获得积分10
8秒前
Lucas应助丫丫采纳,获得10
8秒前
zero完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615303
求助须知:如何正确求助?哪些是违规求助? 4019099
关于积分的说明 12440991
捐赠科研通 3702052
什么是DOI,文献DOI怎么找? 2041414
邀请新用户注册赠送积分活动 1074129
科研通“疑难数据库(出版商)”最低求助积分说明 957743