亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Determination of the Geographical Origin of Coffee Beans Using Terahertz Spectroscopy Combined With Machine Learning Methods

主成分分析 人工智能 支持向量机 线性判别分析 模式识别(心理学) 计算机科学 机器学习 卷积神经网络 维数之咒
作者
Si Yang,Chenxi Li,Mei Yang,Wen Liu,Rong Liu,Wenliang Chen,Dong Han,Kexin Xu
出处
期刊:Frontiers in Nutrition [Frontiers Media SA]
卷期号:8 被引量:20
标识
DOI:10.3389/fnut.2021.680627
摘要

Different geographical origins can lead to great variance in coffee quality, taste, and commercial value. Hence, controlling the authenticity of the origin of coffee beans is of great importance for producers and consumers worldwide. In this study, terahertz (THz) spectroscopy, combined with machine learning methods, was investigated as a fast and non-destructive method to classify the geographic origin of coffee beans, comparing it with the popular machine learning methods, including convolutional neural network (CNN), linear discriminant analysis (LDA), and support vector machine (SVM) to obtain the best model. The curse of dimensionality will cause some classification methods which are struggling to train effective models. Thus, principal component analysis (PCA) and genetic algorithm (GA) were applied for LDA and SVM to create a smaller set of features. The first nine principal components (PCs) with an accumulative contribution rate of 99.9% extracted by PCA and 21 variables selected by GA were the inputs of LDA and SVM models. The results demonstrate that the excellent classification (accuracy was 90% in a prediction set) could be achieved using a CNN method. The results also indicate variable selecting as an important step to create an accurate and robust discrimination model. The performances of LDA and SVM algorithms could be improved with spectral features extracted by PCA and GA. The GA-SVM has achieved 75% accuracy in a prediction set, while the SVM and PCA-SVM have achieved 50 and 65% accuracy, respectively. These results demonstrate that THz spectroscopy, together with machine learning methods, is an effective and satisfactory approach for classifying geographical origins of coffee beans, suggesting the techniques to tap the potential application of deep learning in the authenticity of agricultural products while expanding the application of THz spectroscopy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
上官若男应助大晨采纳,获得10
26秒前
36秒前
NattyPoe发布了新的文献求助10
41秒前
43秒前
你好发布了新的文献求助10
46秒前
科目三应助你好采纳,获得10
51秒前
Danta发布了新的文献求助10
1分钟前
2分钟前
ziyue发布了新的文献求助10
2分钟前
2分钟前
大晨发布了新的文献求助10
2分钟前
2分钟前
river_121发布了新的文献求助10
2分钟前
Lan完成签到 ,获得积分10
2分钟前
大模型应助1123048683wm采纳,获得10
2分钟前
mxczsl完成签到,获得积分10
2分钟前
3分钟前
3分钟前
腰突患者的科研完成签到,获得积分10
3分钟前
思源应助大晨采纳,获得10
3分钟前
tianshanfeihe完成签到 ,获得积分10
4分钟前
xhsz1111完成签到 ,获得积分10
5分钟前
wakawaka完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
寂寞致幻发布了新的文献求助20
6分钟前
DONG发布了新的文献求助10
7分钟前
陶醉的烤鸡完成签到 ,获得积分10
7分钟前
7分钟前
知闲发布了新的文献求助10
7分钟前
SUNny完成签到 ,获得积分10
7分钟前
寂寞致幻完成签到,获得积分10
8分钟前
量子星尘发布了新的文献求助10
8分钟前
KYTQQ完成签到 ,获得积分10
9分钟前
小青年儿完成签到 ,获得积分10
10分钟前
星辰大海应助科研通管家采纳,获得10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
12分钟前
Lucas应助科研通管家采纳,获得10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635044
求助须知:如何正确求助?哪些是违规求助? 4734672
关于积分的说明 14989679
捐赠科研通 4792784
什么是DOI,文献DOI怎么找? 2559896
邀请新用户注册赠送积分活动 1520161
关于科研通互助平台的介绍 1480221