Determination of the Geographical Origin of Coffee Beans Using Terahertz Spectroscopy Combined With Machine Learning Methods

主成分分析 人工智能 支持向量机 线性判别分析 模式识别(心理学) 计算机科学 机器学习 卷积神经网络 维数之咒
作者
Si Yang,Chenxi Li,Mei Yang,Wen Liu,Rong Liu,Wenliang Chen,Dong Han,Kexin Xu
出处
期刊:Frontiers in Nutrition [Frontiers Media]
卷期号:8 被引量:20
标识
DOI:10.3389/fnut.2021.680627
摘要

Different geographical origins can lead to great variance in coffee quality, taste, and commercial value. Hence, controlling the authenticity of the origin of coffee beans is of great importance for producers and consumers worldwide. In this study, terahertz (THz) spectroscopy, combined with machine learning methods, was investigated as a fast and non-destructive method to classify the geographic origin of coffee beans, comparing it with the popular machine learning methods, including convolutional neural network (CNN), linear discriminant analysis (LDA), and support vector machine (SVM) to obtain the best model. The curse of dimensionality will cause some classification methods which are struggling to train effective models. Thus, principal component analysis (PCA) and genetic algorithm (GA) were applied for LDA and SVM to create a smaller set of features. The first nine principal components (PCs) with an accumulative contribution rate of 99.9% extracted by PCA and 21 variables selected by GA were the inputs of LDA and SVM models. The results demonstrate that the excellent classification (accuracy was 90% in a prediction set) could be achieved using a CNN method. The results also indicate variable selecting as an important step to create an accurate and robust discrimination model. The performances of LDA and SVM algorithms could be improved with spectral features extracted by PCA and GA. The GA-SVM has achieved 75% accuracy in a prediction set, while the SVM and PCA-SVM have achieved 50 and 65% accuracy, respectively. These results demonstrate that THz spectroscopy, together with machine learning methods, is an effective and satisfactory approach for classifying geographical origins of coffee beans, suggesting the techniques to tap the potential application of deep learning in the authenticity of agricultural products while expanding the application of THz spectroscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助30
3秒前
4秒前
6秒前
7秒前
曙光发布了新的文献求助10
7秒前
7秒前
9秒前
yliaoyou完成签到,获得积分10
9秒前
迷人外绣关注了科研通微信公众号
9秒前
10秒前
10秒前
ZZ发布了新的文献求助10
11秒前
雨夜带刀不带伞完成签到 ,获得积分10
11秒前
鄂海菡完成签到,获得积分10
12秒前
拼搏的白云完成签到,获得积分10
12秒前
科研通AI5应助平常的凝蕊采纳,获得10
12秒前
SL发布了新的文献求助10
12秒前
zzzqqq完成签到,获得积分10
14秒前
14秒前
笑点低怀亦完成签到,获得积分10
14秒前
自觉雨灵完成签到,获得积分10
15秒前
北彧发布了新的文献求助10
16秒前
baby完成签到,获得积分10
16秒前
zoe完成签到,获得积分20
17秒前
曙光完成签到,获得积分10
17秒前
mmm发布了新的文献求助10
19秒前
华仔应助SL采纳,获得10
20秒前
赘婿应助小洋采纳,获得10
21秒前
丘比特应助哭泣的薯片采纳,获得10
22秒前
所所应助痴情的秋尽采纳,获得10
23秒前
23秒前
Deng完成签到,获得积分10
26秒前
迷人外绣发布了新的文献求助10
26秒前
大个应助不知似若采纳,获得10
28秒前
28秒前
桑葚啊发布了新的文献求助10
29秒前
29秒前
刻苦的溪流完成签到,获得积分10
31秒前
慕青应助lelele采纳,获得10
31秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523679
关于积分的说明 11218338
捐赠科研通 3261196
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182