Deficiency of mitochondrial glycerol 3-phosphate dehydrogenase exacerbates podocyte injury and the progression of diabetic kidney disease

线粒体 糖尿病肾病 生物 肾脏疾病 氧化磷酸化
作者
Hua Qu,Xiaoli Gong,Xiufei Liu,Rui Zhang,Yuren Wang,Bangliang Huang,Linlin Zhang,Hongting Zheng,Yi Zheng
出处
期刊:Diabetes [American Diabetes Association]
卷期号:70 (6): 1372-1387 被引量:2
标识
DOI:10.2337/db20-1157
摘要

Mitochondrial function is essential for bioenergetics, metabolism, and signaling and is compromised in diseases such as proteinuric kidney diseases, contributing to the global burden of kidney failure, cardiovascular morbidity, and death. The key cell type that prevents proteinuria is the terminally differentiated glomerular podocyte. In this study, we characterized the importance of mitochondrial glycerol 3-phosphate dehydrogenase (mGPDH), located on the inner mitochondrial membrane, in regulating podocyte function and glomerular disease. Specifically, podocyte-dominated mGPDH expression was downregulated in the glomeruli of patients and mice with diabetic kidney disease and adriamycin nephropathy. Podocyte-specific depletion of mGPDH in mice exacerbated diabetes- or adriamycin-induced proteinuria, podocyte injury, and glomerular pathology. RNA sequencing revealed that mGPDH regulated the receptor for the advanced glycation end product (RAGE) signaling pathway, and inhibition of RAGE or its ligand, S100A10, protected against the impaired mitochondrial bioenergetics and increased reactive oxygen species generation caused by mGPDH knockdown in cultured podocytes. Moreover, RAGE deletion in podocytes attenuated nephropathy progression in mGPDH-deficient diabetic mice. Rescue of podocyte mGPDH expression in mice with established glomerular injury significantly improved their renal function. In summary, our study proposes that activation of mGPDH induces mitochondrial biogenesis and reinforces mitochondrial function, which may provide a potential therapeutic target for preventing podocyte injury and proteinuria in diabetic kidney disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
希望天下0贩的0应助ddd杜采纳,获得10
4秒前
无情的写论文机器完成签到,获得积分10
5秒前
猪猪hero发布了新的文献求助10
5秒前
8秒前
9秒前
猪猪hero完成签到,获得积分10
10秒前
coolkid发布了新的文献求助10
12秒前
丹妮发布了新的文献求助10
13秒前
在水一方应助lyn采纳,获得10
13秒前
五岳居士应助唐唐采纳,获得10
14秒前
17秒前
科研通AI2S应助沉默千万采纳,获得10
17秒前
19秒前
小蘑菇应助power采纳,获得10
20秒前
木木完成签到,获得积分10
20秒前
ddd杜发布了新的文献求助10
22秒前
24秒前
lmz完成签到,获得积分10
26秒前
coolkid发布了新的文献求助10
27秒前
29秒前
思源应助科研通管家采纳,获得10
30秒前
今后应助科研通管家采纳,获得10
30秒前
Jasper应助科研通管家采纳,获得10
30秒前
oliva发布了新的文献求助10
32秒前
哈哈哈完成签到 ,获得积分10
34秒前
34秒前
perdgs完成签到,获得积分10
34秒前
善学以致用应助coolkid采纳,获得10
35秒前
power发布了新的文献求助10
38秒前
子凡完成签到 ,获得积分10
40秒前
41秒前
47秒前
wen发布了新的文献求助10
49秒前
123发布了新的文献求助10
51秒前
51秒前
54秒前
李健应助NMSL采纳,获得10
54秒前
内向苡完成签到,获得积分10
55秒前
coolkid发布了新的文献求助10
56秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Very-high-order BVD Schemes Using β-variable THINC Method 910
Field Guide to Insects of South Africa 660
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3380470
求助须知:如何正确求助?哪些是违规求助? 2995666
关于积分的说明 8764736
捐赠科研通 2680666
什么是DOI,文献DOI怎么找? 1468073
科研通“疑难数据库(出版商)”最低求助积分说明 678868
邀请新用户注册赠送积分活动 670920