Automation of penicillin adverse drug reaction categorisation and risk stratification with machine learning natural language processing

机器学习 人工智能 计算机科学 青霉素 人工神经网络 药物不良反应 医学诊断 自然语言处理 医学 药品 抗生素 药理学 病理 生物 微生物学
作者
Joshua M. Inglis,Stephen Bacchi,Alexander Troelnikov,William Smith,Sepehr Shakib
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:156: 104611-104611 被引量:18
标识
DOI:10.1016/j.ijmedinf.2021.104611
摘要

The penicillin adverse drug reaction (ADR) label is common in electronic health records (EHRs). However, there is significant misclassification between allergy and intolerance within the EHR and most patients can be delabelled after an immunologic assessment. Machine learning natural language processing may be able to assist with the categorisation and risk stratification of penicillin ADRs.The aim of this study was to use text entered into an EHR to derive and evaluate machine learning models to classify penicillin ADRs and assess the risk of true allergy.Machine learning natural language processing was applied to free-text penicillin ADR data extracted from a public health system EHR. The model was developed by training on labelled dataset. ADR entries were split into training and testing datasets and used to develop and test a variety of machine learning models. These were compared to categorisation with a simple algorithm using keyword search.The best performing model for the classification of penicillin ADRs as being consistent with allergy or intolerance was the artificial neural network (AUC 0.994, sensitivity 0.99, specificity 0.96). The artificial neural network also achieved the highest AUC in the classification of high- or low-risk of true allergy (AUC 0.988, sensitivity 0.99, specificity 0.99). All ADR labels were able to be classified using these machine learning models, whereas a small proportion were unclassifiable using the simple algorithm as they contained no keywords.Machine learning natural language processing performed similarly to expert criteria in classifying and risk stratifying penicillin ADRs labels. These models outperformed simpler algorithms in their ability to interpret free-text data contained in the EHR. The automated evaluation of penicillin ADR labels may allow real-time risk stratification to facilitate delabelling and improve the specificity of prescribing alerts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orange发布了新的文献求助10
刚刚
Della发布了新的文献求助10
2秒前
2秒前
Akim应助端木熙采纳,获得10
2秒前
Dubdog完成签到,获得积分10
3秒前
3秒前
苗老九发布了新的文献求助10
4秒前
shore完成签到,获得积分10
6秒前
153495159应助zorro3574采纳,获得10
8秒前
8秒前
fai发布了新的文献求助20
9秒前
orange完成签到,获得积分10
10秒前
俏皮不可发布了新的文献求助10
11秒前
11秒前
稳重面包完成签到,获得积分10
12秒前
KK完成签到,获得积分10
12秒前
丘比特应助ryt采纳,获得10
13秒前
苹果巧蕊完成签到 ,获得积分10
13秒前
14秒前
慧敏发布了新的文献求助10
15秒前
Annie发布了新的文献求助10
15秒前
踏雪完成签到,获得积分10
16秒前
俏皮不可完成签到,获得积分10
17秒前
动人的诗霜完成签到 ,获得积分10
17秒前
神凰完成签到,获得积分10
17秒前
fai完成签到,获得积分10
18秒前
19秒前
21秒前
称心的笑阳完成签到,获得积分10
22秒前
22秒前
阿凯完成签到 ,获得积分10
23秒前
23秒前
yangll发布了新的文献求助10
24秒前
iNk应助zorro3574采纳,获得10
25秒前
lucky他爹完成签到,获得积分10
26秒前
沉默哈密瓜完成签到 ,获得积分10
26秒前
27秒前
华仔应助野性的凌瑶采纳,获得10
27秒前
丘比特应助Philip采纳,获得10
28秒前
yjc发布了新的文献求助10
29秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151772
求助须知:如何正确求助?哪些是违规求助? 2803175
关于积分的说明 7852148
捐赠科研通 2460566
什么是DOI,文献DOI怎么找? 1309864
科研通“疑难数据库(出版商)”最低求助积分说明 629061
版权声明 601760