Automation of penicillin adverse drug reaction categorisation and risk stratification with machine learning natural language processing

机器学习 人工智能 计算机科学 青霉素 人工神经网络 药物不良反应 医学诊断 自然语言处理 医学 药品 抗生素 药理学 病理 生物 微生物学
作者
Joshua M. Inglis,Stephen Bacchi,Alexander Troelnikov,William Smith,Sepehr Shakib
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:156: 104611-104611 被引量:19
标识
DOI:10.1016/j.ijmedinf.2021.104611
摘要

The penicillin adverse drug reaction (ADR) label is common in electronic health records (EHRs). However, there is significant misclassification between allergy and intolerance within the EHR and most patients can be delabelled after an immunologic assessment. Machine learning natural language processing may be able to assist with the categorisation and risk stratification of penicillin ADRs.The aim of this study was to use text entered into an EHR to derive and evaluate machine learning models to classify penicillin ADRs and assess the risk of true allergy.Machine learning natural language processing was applied to free-text penicillin ADR data extracted from a public health system EHR. The model was developed by training on labelled dataset. ADR entries were split into training and testing datasets and used to develop and test a variety of machine learning models. These were compared to categorisation with a simple algorithm using keyword search.The best performing model for the classification of penicillin ADRs as being consistent with allergy or intolerance was the artificial neural network (AUC 0.994, sensitivity 0.99, specificity 0.96). The artificial neural network also achieved the highest AUC in the classification of high- or low-risk of true allergy (AUC 0.988, sensitivity 0.99, specificity 0.99). All ADR labels were able to be classified using these machine learning models, whereas a small proportion were unclassifiable using the simple algorithm as they contained no keywords.Machine learning natural language processing performed similarly to expert criteria in classifying and risk stratifying penicillin ADRs labels. These models outperformed simpler algorithms in their ability to interpret free-text data contained in the EHR. The automated evaluation of penicillin ADR labels may allow real-time risk stratification to facilitate delabelling and improve the specificity of prescribing alerts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
lai完成签到,获得积分10
4秒前
刘嘻嘻发布了新的文献求助10
5秒前
velen完成签到,获得积分10
5秒前
科研通AI5应助笑点低的不采纳,获得10
5秒前
共享精神应助笑点低的不采纳,获得10
5秒前
5秒前
5秒前
文艺君浩完成签到,获得积分10
6秒前
鲤鱼向珊发布了新的文献求助10
7秒前
Libgenxxxx完成签到,获得积分10
7秒前
狂野萤完成签到,获得积分10
8秒前
9秒前
科研通AI5应助科研果采纳,获得20
11秒前
江浙涵涵发布了新的文献求助30
11秒前
SciGPT应助积极的尔岚采纳,获得10
11秒前
12秒前
SYLH应助qqqqqq采纳,获得30
12秒前
smottom应助Jonathan采纳,获得10
12秒前
13秒前
念姬发布了新的文献求助10
13秒前
14秒前
cloud完成签到,获得积分10
15秒前
16秒前
hui关闭了hui文献求助
16秒前
17秒前
功必扬完成签到,获得积分10
18秒前
小肥吴完成签到,获得积分10
19秒前
Esther完成签到,获得积分10
22秒前
义气谷蕊完成签到,获得积分10
23秒前
24秒前
梦白鸽发布了新的文献求助20
24秒前
曾经小伙完成签到 ,获得积分10
25秒前
qqqqqq完成签到,获得积分10
25秒前
phstar关注了科研通微信公众号
25秒前
26秒前
鲤鱼向珊完成签到,获得积分10
27秒前
orixero应助迷人的雪珍采纳,获得10
27秒前
科研通AI5应助峪星采纳,获得10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511908
关于积分的说明 11160656
捐赠科研通 3246646
什么是DOI,文献DOI怎么找? 1793433
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403