已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Curvature based fragmentation for curvilinear mask process correction

曲线坐标 光掩模 曲率 平版印刷术 计算机科学 光学接近校正 光学 算法 几何学 材料科学 抵抗 物理 数学 复合材料 图层(电子)
作者
Ingo Bork,Peter Buck,Bhardwaj Durvasula,Vlad Liubich,Nageswara Rao,Rachit Sharma,Mary Zuo
标识
DOI:10.1117/12.2601032
摘要

Photomask technology has advanced substantially with the introduction of Multi Beam Mask Writers (MBMW), which achieve acceptable mask write times even with very complex mask patterns. In addition, Inverse Lithography Technology (ILT) and similar techniques generating complex curvilinear mask shapes, have been shown to improve wafer lithography process window significantly. Both of those factors and the increasing power of computing resources increase the use of such mask shapes for DUV and EUV lithography. However, when processing complex curvilinear mask shapes in the mask data preparation flow, file size and data processing time, for example in Mask Process Correction (MPC), become a bottleneck[4]. In order to reduce the impact of curvilinear mask shapes on overall data preparation time, this work introduces a Curvature Based Fracturing (CBF) method, feasible for reducing file size and data processing time. CBF fragments curvilinear shapes based on their curvature. This method generates short segments along the shape edges where curvature is large and longer segments where curvature is small. Fragmenting curvilinear shapes this way is important for MPC to work well and achieve small Edge-Placement-Errors (EPE) even at high curvature regions. In addition, the method only generates small fragments where they are required for good MPC convergence but relaxes segment length at low curvature areas. That way, in many cases the result is a reduction in fragment count per shape and therefore a reduction in MPC runtime. The reduced fragment count also translates directly into smaller file sizes. In order to optimize the entire mask data preparation flow, CBF is applied during curvilinear OPC or ILT, so that all following data processing steps, in particular MPC, can benefit from an optimized fragmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
春日奶黄包完成签到 ,获得积分10
2秒前
rainbow完成签到 ,获得积分0
2秒前
3秒前
5秒前
陈尹蓝完成签到 ,获得积分10
6秒前
新一袁发布了新的文献求助10
6秒前
tym完成签到,获得积分10
7秒前
有夜空的地方必然有星河完成签到 ,获得积分10
7秒前
qcy72完成签到 ,获得积分10
7秒前
徐佳乐发布了新的文献求助10
11秒前
阿豪要发文章完成签到 ,获得积分10
12秒前
棒棒冰完成签到 ,获得积分10
12秒前
几两完成签到 ,获得积分10
13秒前
liyutong发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
爆米花应助chendu采纳,获得10
16秒前
完美世界应助songvv采纳,获得10
16秒前
感性的俊驰完成签到 ,获得积分10
17秒前
h0jian09完成签到,获得积分10
18秒前
kaka完成签到,获得积分0
18秒前
19秒前
天下无敌完成签到 ,获得积分10
19秒前
JXZZ应助得我采纳,获得10
19秒前
嗯哼举报Nauyt求助涉嫌违规
19秒前
20秒前
20秒前
橘子皮完成签到,获得积分10
23秒前
xuanxuan完成签到 ,获得积分10
23秒前
23秒前
ss发布了新的文献求助10
24秒前
无花果应助研友_宋文昊采纳,获得10
25秒前
27秒前
27秒前
闾丘惜萱完成签到,获得积分10
28秒前
我是老大应助zai采纳,获得10
29秒前
里里完成签到 ,获得积分10
30秒前
yanxueyi完成签到 ,获得积分10
30秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463516
求助须知:如何正确求助?哪些是违规求助? 3056862
关于积分的说明 9054494
捐赠科研通 2746825
什么是DOI,文献DOI怎么找? 1507063
科研通“疑难数据库(出版商)”最低求助积分说明 696327
邀请新用户注册赠送积分活动 695897