已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Comprehensive Survey on Graph Anomaly Detection With Deep Learning

计算机科学 异常检测 图形 数据挖掘 数据科学 图形数据库 深度学习 人工智能 机器学习 理论计算机科学
作者
Xiaoxiao Ma,Jia Wu,Shan Xue,Jian Yang,Chuan Zhou,Quan Z. Sheng,Hui Xiong,Leman Akoglu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:35 (12): 12012-12038 被引量:393
标识
DOI:10.1109/tkde.2021.3118815
摘要

Anomalies are rare observations (e.g., data records or events) that deviate significantly from the others in the sample. Over the past few decades, research on anomaly mining has received increasing interests due to the implications of these occurrences in a wide range of disciplines - for instance, security, finance, and medicine. For this reason, anomaly detection, which aims to identify these rare observations, has become one of the most vital tasks in the world and has shown its power in preventing detrimental events, such as financial fraud, network intrusions, and social spam. The detection task is typically solved by identifying outlying data points in the feature space, which, inherently, overlooks the relational information in real-world data. At the same time, graphs have been prevalently used to represent the structural/relational information, which raises the graph anomaly detection problem - identifying anomalous graph objects (i.e., nodes, edges and sub-graphs) in a single graph, or anomalous graphs in a set/database of graphs. Conventional anomaly detection techniques cannot tackle this problem well because of the complexity of graph data (e.g., irregular structures, relational dependencies, node/edge types/attributes/directions/multiplicities/weights, large scale, etc.). However, thanks to the advent of deep learning in breaking these limitations, graph anomaly detection with deep learning has received a growing attention recently. In this survey, we aim to provide a systematic and comprehensive review of the contemporary deep learning techniques for graph anomaly detection. Specifically, we provide a taxonomy that follows a task-driven strategy and categorizes existing work according to the anomalous graph objects that they can detect. We especially focus on the challenges in this research area and discuss the key intuitions, technical details as well as relative strengths and weaknesses of various techniques in each category. From the survey results, we highlight 12 future research directions spanning unsolved and emerging problems introduced by graph data, anomaly detection, deep learning and real-world applications. Additionally, to provide a wealth of useful resources for future studies, we have compiled a set of open-source implementations, public datasets, and commonly-used evaluation metrics. With this survey, our goal is to create a “one-stop-shop” that provides a unified understanding of the problem categories and existing approaches, publicly available hands-on resources, and high-impact open challenges for graph anomaly detection using deep learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健壮的花生zzz完成签到,获得积分10
1秒前
朴实的小萱完成签到 ,获得积分10
3秒前
4秒前
希望天下0贩的0应助PRIPRO采纳,获得10
8秒前
小马甲应助akakns采纳,获得10
8秒前
枫威完成签到 ,获得积分10
10秒前
没有名称完成签到,获得积分10
10秒前
萧湘完成签到,获得积分10
10秒前
徐老师完成签到 ,获得积分10
11秒前
12秒前
西蓝花香菜完成签到 ,获得积分10
13秒前
简单的沛蓝完成签到 ,获得积分10
15秒前
我爱Chem完成签到 ,获得积分10
16秒前
网上飞完成签到,获得积分10
19秒前
NexusExplorer应助柯善鹏采纳,获得10
20秒前
20秒前
chen发布了新的文献求助10
21秒前
小刘完成签到,获得积分10
29秒前
PRIPRO完成签到,获得积分20
30秒前
只要平凡发布了新的文献求助10
31秒前
学者风范完成签到 ,获得积分10
31秒前
32秒前
Jasper完成签到,获得积分10
32秒前
感动的广缘完成签到,获得积分20
33秒前
zhang完成签到 ,获得积分20
33秒前
华仔应助dgxxhl采纳,获得10
34秒前
Jasper应助崔诗云采纳,获得10
35秒前
36秒前
务实时光完成签到 ,获得积分10
37秒前
chen完成签到,获得积分10
39秒前
39秒前
39秒前
柯善鹏发布了新的文献求助10
40秒前
zmx完成签到 ,获得积分10
43秒前
akakns发布了新的文献求助10
45秒前
123发布了新的文献求助10
46秒前
哈哈哈哈完成签到,获得积分10
46秒前
阿信必发JACS完成签到,获得积分10
47秒前
48秒前
49秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994701
求助须知:如何正确求助?哪些是违规求助? 3534936
关于积分的说明 11266877
捐赠科研通 3274773
什么是DOI,文献DOI怎么找? 1806467
邀请新用户注册赠送积分活动 883316
科研通“疑难数据库(出版商)”最低求助积分说明 809749