A Comprehensive Survey on Graph Anomaly Detection With Deep Learning

计算机科学 异常检测 图形 数据挖掘 数据科学 图形数据库 深度学习 人工智能 机器学习 理论计算机科学
作者
Xiaoxiao Ma,Jia Wu,Shan Xue,Jian Yang,Chuan Zhou,Quan Z. Sheng,Hui Xiong,Leman Akoglu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (12): 12012-12038 被引量:296
标识
DOI:10.1109/tkde.2021.3118815
摘要

Anomalies represent rare observations (e.g., data records or events) that deviate significantly from others. Over several decades, research on anomaly mining has received increasing interests due to the implications of these occurrences in a wide range of disciplines. Anomaly detection, which aims to identify rare observations, is among the most vital tasks in the world, and has shown its power in preventing detrimental events, such as financial fraud, network intrusion, and social spam. The detection task is typically solved by identifying outlying data points in the feature space and inherently overlooks the relational information in real-world data. Graphs have been prevalently used to represent the structural information, which raises the graph anomaly detection problem - identifying anomalous graph objects (i.e., nodes, edges and sub-graphs) in a single graph, or anomalous graphs in a database/set of graphs. However, conventional anomaly detection techniques cannot tackle this problem well because of the complexity of graph data. For the advent of deep learning, graph anomaly detection with deep learning has received a growing attention recently. In this survey, we aim to provide a systematic and comprehensive review of the contemporary deep learning techniques for graph anomaly detection. We compile open-sourced implementations, public datasets, and commonly-used evaluation metrics to provide affluent resources for future studies. More importantly, we highlight twelve extensive future research directions according to our survey results covering unsolved and emerging research problems and real-world applications. With this survey, our goal is to create a "one-stop-shop" that provides a unified understanding of the problem categories and existing approaches, publicly available hands-on resources, and high-impact open challenges for graph anomaly detection using deep learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助fly采纳,获得10
10秒前
来一斤这种鱼完成签到 ,获得积分10
11秒前
学术laji完成签到 ,获得积分10
18秒前
22秒前
26秒前
学术laji发布了新的文献求助10
26秒前
哼哼完成签到 ,获得积分10
42秒前
qupei完成签到 ,获得积分10
47秒前
林林完成签到,获得积分10
50秒前
帅气天荷完成签到 ,获得积分10
55秒前
Amikacin完成签到,获得积分10
57秒前
xie完成签到 ,获得积分10
1分钟前
michaelvin完成签到,获得积分10
1分钟前
zyw完成签到 ,获得积分10
1分钟前
穆一手完成签到 ,获得积分10
1分钟前
小布完成签到 ,获得积分10
1分钟前
qianshu完成签到,获得积分10
1分钟前
科研人完成签到 ,获得积分10
1分钟前
荣格的小学生完成签到,获得积分10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
Tina完成签到 ,获得积分10
1分钟前
陈M雯完成签到 ,获得积分10
2分钟前
小富婆完成签到 ,获得积分10
2分钟前
葶ting完成签到 ,获得积分10
2分钟前
诺亚方舟哇哈哈完成签到 ,获得积分0
2分钟前
牛奶面包完成签到 ,获得积分10
2分钟前
hanliulaixi完成签到 ,获得积分10
2分钟前
秀丽的皮皮虾完成签到 ,获得积分10
2分钟前
笑点低蜜蜂完成签到,获得积分10
2分钟前
冬雪完成签到 ,获得积分10
2分钟前
gnr2000完成签到,获得积分10
2分钟前
77完成签到 ,获得积分10
2分钟前
稳重傲晴完成签到 ,获得积分10
3分钟前
菠萝蜜完成签到 ,获得积分10
3分钟前
LIVE完成签到,获得积分10
3分钟前
guandada完成签到 ,获得积分10
3分钟前
tangchao完成签到,获得积分10
3分钟前
XZY完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 450
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164826
求助须知:如何正确求助?哪些是违规求助? 2815925
关于积分的说明 7910558
捐赠科研通 2475504
什么是DOI,文献DOI怎么找? 1318250
科研通“疑难数据库(出版商)”最低求助积分说明 632035
版权声明 602296