Dynamic Graph-Based Feature Learning With Few Edges Considering Noisy Samples for Rotating Machinery Fault Diagnosis

图形 计算机科学 模式识别(心理学) 算法 人工智能 理论计算机科学
作者
Kaibo Zhou,Chaoying Yang,Jie Liu,Qi Xu
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:69 (10): 10595-10604 被引量:75
标识
DOI:10.1109/tie.2021.3121748
摘要

Due to its ability to learn the relationship among nodes from graph data, the graph convolution network (GCN) has received extensive attention. In the machine fault diagnosis field, it needs to construct input graphs reflecting features and relationships of the monitoring signals. Thus, the quality of the input graph affects the diagnostic performance. But it still has two limitations: 1) the constructed input graph usually has redundant edges, consuming excessive computational costs; 2) the constructed input graph cannot reflect the relationship between the noisy signals well. In order to overcome them, a dynamic graph-based feature learning with few edges considering noisy samples is proposed for rotating machinery fault diagnosis in this article. Noisy vibration signals are converted into one spectrum feature-based static graph, where redundant edges are simplified by the distance metric function. Edge connections of the input static graph are updated according to the relationship among high-level features extracted by the GCN. Based on this, dynamic input graphs are reconstructed as new graph representations for noisy samples. To verify the effectiveness of the proposed method, validation experiments were conducted on practical platforms, and results show that the dynamic input graph with few edges can effectively improve the diagnostic performance under different SNRs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
下课了吧完成签到,获得积分10
1秒前
2秒前
语秋完成签到,获得积分10
2秒前
黑鲨发布了新的文献求助20
2秒前
大帅完成签到 ,获得积分10
2秒前
支支完成签到 ,获得积分10
3秒前
我是老大应助科研通管家采纳,获得30
3秒前
3秒前
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
3秒前
鱼香丸子应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
陌上尘开发布了新的文献求助30
3秒前
ding应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
不安青牛应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
医文轩完成签到,获得积分10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
不安青牛应助科研通管家采纳,获得10
4秒前
108实验室发布了新的文献求助10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
4秒前
烟花应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
不安青牛应助科研通管家采纳,获得10
5秒前
l玖发布了新的文献求助10
5秒前
jason发布了新的文献求助10
6秒前
五毛发布了新的文献求助10
6秒前
Wey发布了新的文献求助10
6秒前
HMZ完成签到,获得积分10
6秒前
Sunny完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615303
求助须知:如何正确求助?哪些是违规求助? 4019099
关于积分的说明 12440991
捐赠科研通 3702052
什么是DOI,文献DOI怎么找? 2041414
邀请新用户注册赠送积分活动 1074129
科研通“疑难数据库(出版商)”最低求助积分说明 957743