亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dynamic Graph-Based Feature Learning With Few Edges Considering Noisy Samples for Rotating Machinery Fault Diagnosis

图形 计算机科学 模式识别(心理学) 算法 人工智能 理论计算机科学
作者
Kaibo Zhou,Chaoying Yang,Jie Liu,Qi Xu
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:69 (10): 10595-10604 被引量:91
标识
DOI:10.1109/tie.2021.3121748
摘要

Due to its ability to learn the relationship among nodes from graph data, the graph convolution network (GCN) has received extensive attention. In the machine fault diagnosis field, it needs to construct input graphs reflecting features and relationships of the monitoring signals. Thus, the quality of the input graph affects the diagnostic performance. But it still has two limitations: 1) the constructed input graph usually has redundant edges, consuming excessive computational costs; 2) the constructed input graph cannot reflect the relationship between the noisy signals well. In order to overcome them, a dynamic graph-based feature learning with few edges considering noisy samples is proposed for rotating machinery fault diagnosis in this article. Noisy vibration signals are converted into one spectrum feature-based static graph, where redundant edges are simplified by the distance metric function. Edge connections of the input static graph are updated according to the relationship among high-level features extracted by the GCN. Based on this, dynamic input graphs are reconstructed as new graph representations for noisy samples. To verify the effectiveness of the proposed method, validation experiments were conducted on practical platforms, and results show that the dynamic input graph with few edges can effectively improve the diagnostic performance under different SNRs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
xjynh发布了新的文献求助10
3秒前
Smar_zcl应助null采纳,获得50
10秒前
内向雪旋完成签到,获得积分10
11秒前
完美世界应助xjynh采纳,获得10
12秒前
15秒前
18秒前
21秒前
仁爱裘发布了新的文献求助10
22秒前
duduwind发布了新的文献求助10
26秒前
null重新开启了善泽文献应助
27秒前
af完成签到,获得积分10
32秒前
44秒前
57秒前
liushangyuan发布了新的文献求助10
1分钟前
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
一一完成签到,获得积分10
1分钟前
2分钟前
CHENG发布了新的文献求助20
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
无情翅膀完成签到,获得积分10
2分钟前
kingwill应助CHENG采纳,获得20
2分钟前
2分钟前
Jayzie完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
香蕉觅云应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413236
求助须知:如何正确求助?哪些是违规求助? 4530397
关于积分的说明 14122909
捐赠科研通 4445358
什么是DOI,文献DOI怎么找? 2439191
邀请新用户注册赠送积分活动 1431244
关于科研通互助平台的介绍 1408692