已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dynamic Graph-Based Feature Learning With Few Edges Considering Noisy Samples for Rotating Machinery Fault Diagnosis

图形 计算机科学 模式识别(心理学) 算法 人工智能 理论计算机科学
作者
Kaibo Zhou,Chaoying Yang,Jie Liu,Qi Xu
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:69 (10): 10595-10604 被引量:91
标识
DOI:10.1109/tie.2021.3121748
摘要

Due to its ability to learn the relationship among nodes from graph data, the graph convolution network (GCN) has received extensive attention. In the machine fault diagnosis field, it needs to construct input graphs reflecting features and relationships of the monitoring signals. Thus, the quality of the input graph affects the diagnostic performance. But it still has two limitations: 1) the constructed input graph usually has redundant edges, consuming excessive computational costs; 2) the constructed input graph cannot reflect the relationship between the noisy signals well. In order to overcome them, a dynamic graph-based feature learning with few edges considering noisy samples is proposed for rotating machinery fault diagnosis in this article. Noisy vibration signals are converted into one spectrum feature-based static graph, where redundant edges are simplified by the distance metric function. Edge connections of the input static graph are updated according to the relationship among high-level features extracted by the GCN. Based on this, dynamic input graphs are reconstructed as new graph representations for noisy samples. To verify the effectiveness of the proposed method, validation experiments were conducted on practical platforms, and results show that the dynamic input graph with few edges can effectively improve the diagnostic performance under different SNRs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小耗子发布了新的文献求助10
1秒前
大模型应助pishuang采纳,获得10
2秒前
3秒前
壮观大炮完成签到,获得积分10
4秒前
长情的寇完成签到 ,获得积分10
4秒前
可爱初瑶发布了新的文献求助10
5秒前
5秒前
雾海完成签到,获得积分10
7秒前
英俊的铭应助siso采纳,获得10
7秒前
zhangyue7777完成签到,获得积分10
7秒前
newplayer发布了新的文献求助10
10秒前
科研通AI2S应助可爱初瑶采纳,获得10
10秒前
11秒前
张然完成签到,获得积分20
12秒前
14秒前
Fxy完成签到 ,获得积分10
16秒前
pishuang发布了新的文献求助10
17秒前
冬柳完成签到,获得积分10
17秒前
冰川与星辰完成签到,获得积分10
17秒前
嘻嘻完成签到 ,获得积分10
18秒前
努力的小明明完成签到,获得积分10
19秒前
19秒前
20秒前
ding应助小耗子采纳,获得10
21秒前
超级安莲完成签到,获得积分10
21秒前
领导范儿应助Leo采纳,获得10
22秒前
123发布了新的文献求助10
23秒前
newplayer完成签到,获得积分10
24秒前
26秒前
zzz发布了新的文献求助10
26秒前
ABCD完成签到 ,获得积分10
28秒前
29秒前
无花果应助123采纳,获得10
31秒前
西宁发布了新的文献求助10
31秒前
hayek完成签到,获得积分10
33秒前
Leo发布了新的文献求助10
34秒前
35秒前
35秒前
量子星尘发布了新的文献求助10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463082
求助须知:如何正确求助?哪些是违规求助? 4567845
关于积分的说明 14311869
捐赠科研通 4493691
什么是DOI,文献DOI怎么找? 2461823
邀请新用户注册赠送积分活动 1450866
关于科研通互助平台的介绍 1426021