Dynamic Graph-Based Feature Learning With Few Edges Considering Noisy Samples for Rotating Machinery Fault Diagnosis

图形 计算机科学 模式识别(心理学) 算法 人工智能 理论计算机科学
作者
Kaibo Zhou,Chaoying Yang,Jie Liu,Qi Xu
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:69 (10): 10595-10604 被引量:60
标识
DOI:10.1109/tie.2021.3121748
摘要

Due to its ability to learn the relationship among nodes from graph data, the graph convolution network (GCN) has received extensive attention. In the machine fault diagnosis field, it needs to construct input graphs reflecting features and relationships of the monitoring signals. Thus, the quality of the input graph affects the diagnostic performance. But it still has two limitations: 1) the constructed input graph usually has redundant edges, consuming excessive computational costs; 2) the constructed input graph cannot reflect the relationship between the noisy signals well. In order to overcome them, a dynamic graph-based feature learning with few edges considering noisy samples is proposed for rotating machinery fault diagnosis in this article. Noisy vibration signals are converted into one spectrum feature-based static graph, where redundant edges are simplified by the distance metric function. Edge connections of the input static graph are updated according to the relationship among high-level features extracted by the GCN. Based on this, dynamic input graphs are reconstructed as new graph representations for noisy samples. To verify the effectiveness of the proposed method, validation experiments were conducted on practical platforms, and results show that the dynamic input graph with few edges can effectively improve the diagnostic performance under different SNRs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王小凡完成签到 ,获得积分10
刚刚
CAOHOU应助dddd采纳,获得10
2秒前
Smiling完成签到 ,获得积分10
7秒前
小林神完成签到,获得积分10
8秒前
xiaofenzi完成签到,获得积分10
12秒前
mix完成签到 ,获得积分10
18秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
Banff完成签到,获得积分10
21秒前
21秒前
baomingqiu完成签到 ,获得积分10
23秒前
MS903完成签到 ,获得积分10
24秒前
哈哈哈发布了新的文献求助10
24秒前
fuws完成签到 ,获得积分10
24秒前
关外李少发布了新的文献求助10
25秒前
xzy998应助科研通管家采纳,获得10
26秒前
爆米花应助科研通管家采纳,获得10
26秒前
jueshadi完成签到 ,获得积分10
28秒前
轻语完成签到 ,获得积分10
30秒前
32秒前
star完成签到,获得积分10
32秒前
小李完成签到 ,获得积分10
33秒前
CJW完成签到 ,获得积分10
34秒前
华理附院孙文博完成签到 ,获得积分10
34秒前
zyz完成签到,获得积分10
36秒前
fomo完成签到,获得积分10
39秒前
ding应助cavendipeng采纳,获得10
40秒前
终于花开日完成签到 ,获得积分10
42秒前
K. G.完成签到,获得积分0
42秒前
沙里飞完成签到 ,获得积分10
43秒前
bing完成签到,获得积分10
45秒前
友好语风完成签到,获得积分10
46秒前
47秒前
bigpluto完成签到,获得积分10
48秒前
K先生完成签到 ,获得积分10
50秒前
CLTTTt完成签到,获得积分10
50秒前
易水寒完成签到 ,获得积分10
50秒前
52秒前
52秒前
HY完成签到,获得积分10
56秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015640
求助须知:如何正确求助?哪些是违规求助? 3555625
关于积分的说明 11318138
捐赠科研通 3288796
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015