Dynamic Graph-Based Feature Learning With Few Edges Considering Noisy Samples for Rotating Machinery Fault Diagnosis

图形 计算机科学 模式识别(心理学) 算法 人工智能 理论计算机科学
作者
Kaibo Zhou,Chaoying Yang,Jie Liu,Qi Xu
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:69 (10): 10595-10604 被引量:75
标识
DOI:10.1109/tie.2021.3121748
摘要

Due to its ability to learn the relationship among nodes from graph data, the graph convolution network (GCN) has received extensive attention. In the machine fault diagnosis field, it needs to construct input graphs reflecting features and relationships of the monitoring signals. Thus, the quality of the input graph affects the diagnostic performance. But it still has two limitations: 1) the constructed input graph usually has redundant edges, consuming excessive computational costs; 2) the constructed input graph cannot reflect the relationship between the noisy signals well. In order to overcome them, a dynamic graph-based feature learning with few edges considering noisy samples is proposed for rotating machinery fault diagnosis in this article. Noisy vibration signals are converted into one spectrum feature-based static graph, where redundant edges are simplified by the distance metric function. Edge connections of the input static graph are updated according to the relationship among high-level features extracted by the GCN. Based on this, dynamic input graphs are reconstructed as new graph representations for noisy samples. To verify the effectiveness of the proposed method, validation experiments were conducted on practical platforms, and results show that the dynamic input graph with few edges can effectively improve the diagnostic performance under different SNRs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助学术蝗虫2726采纳,获得10
刚刚
大大大漂亮完成签到 ,获得积分10
刚刚
研友_VZG7GZ应助alu采纳,获得10
1秒前
li完成签到 ,获得积分10
1秒前
领导范儿应助wlm采纳,获得10
2秒前
3秒前
乐乐应助臣波采纳,获得10
4秒前
5秒前
6秒前
7秒前
sun完成签到,获得积分10
9秒前
现实的书易完成签到,获得积分10
10秒前
SciGPT应助怡然大楚采纳,获得10
11秒前
12秒前
斯文败类应助凯撒采纳,获得10
12秒前
elizabeth339发布了新的文献求助50
12秒前
13秒前
xy发布了新的文献求助10
13秒前
zcl应助海海采纳,获得80
14秒前
超帅大米完成签到 ,获得积分10
14秒前
赫连立果完成签到,获得积分10
18秒前
Minicoper发布了新的文献求助10
18秒前
18秒前
一二三四完成签到,获得积分10
21秒前
浮游应助浮浮世世采纳,获得10
22秒前
凯撒发布了新的文献求助10
22秒前
22秒前
aiaiai完成签到,获得积分10
22秒前
美好善斓完成签到 ,获得积分10
23秒前
xuuu完成签到,获得积分10
25秒前
25秒前
幸福的小霜完成签到,获得积分20
26秒前
学术乞丐发布了新的文献求助10
26秒前
悟123完成签到 ,获得积分10
26秒前
文献互助1发布了新的文献求助10
26秒前
27秒前
布雨完成签到,获得积分10
29秒前
凯撒完成签到,获得积分10
29秒前
jie完成签到 ,获得积分10
29秒前
浮游应助王艳霞采纳,获得10
29秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5237092
求助须知:如何正确求助?哪些是违规求助? 4405099
关于积分的说明 13709387
捐赠科研通 4273149
什么是DOI,文献DOI怎么找? 2344837
邀请新用户注册赠送积分活动 1342033
关于科研通互助平台的介绍 1299752