Identification of a novel cancer microbiome signature for predicting prognosis of human breast cancer patients

列线图 医学 微生物群 肿瘤科 乳腺癌 内科学 比例危险模型 单变量 生物标志物 癌症 多元统计 生物信息学 机器学习 生物 遗传学 计算机科学
作者
Aiqin Mao,H. Barck,Jennifer Young,A. Paley,Jian‐Hua Mao,Hang Chang
出处
期刊:Clinical & Translational Oncology [Springer Nature]
卷期号:24 (3): 597-604 被引量:25
标识
DOI:10.1007/s12094-021-02725-3
摘要

Prognosis of breast cancer (BC) patients differs considerably and identifying reliable prognostic biomarker(s) is imperative. With evidence that the microbiome plays a critical role in the response to cancer therapies, we aimed to identify a cancer microbiome signature for predicting the prognosis of BC patients.The TCGA BC microbiome data (TCGA-BRCA-microbiome) was downloaded from cBioPortal. Univariate and multivariate Cox regression analyses were used to examine association of microbial abundance with overall survival (OS) and to identify a microbial signature for creating a prognostic scoring model. The performance of the scoring model was assessed by the area under the ROC curve (AUC). Nomograms using the microbial signature, clinical factors, and molecular subtypes were established to predict OS and progression-free survival (PFS).Among 1406 genera, the abundances of 94 genera were significantly associated with BC patient OS in TCGA-BRCA-microbiome dataset. From that set we identified a 15-microbe prognostic signature and developed a 15-microbial abundance prognostic scoring (MAPS) model. Patients in low-risk group significantly prolong OS and PFS as compared to those in high-risk group. The time-dependent ROC curves with MAPS showed good predictive efficacy both in OS and PFS. Moreover, MAPS is an independent prognostic factor for OS and PFS over clinical factors and PAM50-based molecular subtypes and superior to the previously published 12-gene signature. The integration of MAPS into nomograms significantly improved prognosis prediction.MAPS was successfully established to have independent prognostic value, and our study provides a new avenue for developing prognostic biomarkers by microbiome profiling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情谷兰完成签到,获得积分10
1秒前
上官若男应助崔风机采纳,获得10
2秒前
4秒前
Zx完成签到 ,获得积分10
4秒前
5秒前
miaojuly给miaojuly的求助进行了留言
6秒前
思源应助劈里啪啦滴毛毛采纳,获得10
7秒前
7秒前
上官若男应助yanjiusheng采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
吭吭菜菜发布了新的文献求助10
9秒前
研友_VZG7GZ应助xiaotian采纳,获得10
10秒前
10秒前
Bruial发布了新的文献求助10
10秒前
西又木完成签到,获得积分10
12秒前
13秒前
13秒前
蓝123456发布了新的文献求助10
13秒前
脑洞疼应助柚子采纳,获得10
13秒前
13秒前
高翔发布了新的文献求助10
14秒前
Hello应助Arnold采纳,获得10
16秒前
16秒前
英吉利25发布了新的文献求助10
17秒前
西又木发布了新的文献求助30
17秒前
17秒前
17秒前
18秒前
18秒前
SciGPT应助XX采纳,获得10
18秒前
面向阳光完成签到,获得积分10
18秒前
18秒前
杨同学完成签到,获得积分10
19秒前
20秒前
文静灵阳发布了新的文献求助10
22秒前
大力的惠关注了科研通微信公众号
22秒前
23秒前
大力的惠关注了科研通微信公众号
23秒前
Bruial完成签到,获得积分10
23秒前
HJJHJH发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642354
求助须知:如何正确求助?哪些是违规求助? 4758746
关于积分的说明 15017371
捐赠科研通 4801005
什么是DOI,文献DOI怎么找? 2566290
邀请新用户注册赠送积分活动 1524440
关于科研通互助平台的介绍 1483953