Identification of a novel cancer microbiome signature for predicting prognosis of human breast cancer patients

列线图 医学 微生物群 肿瘤科 乳腺癌 内科学 比例危险模型 单变量 生物标志物 癌症 多元统计 生物信息学 机器学习 生物 遗传学 计算机科学
作者
Aiqin Mao,H. Barck,Jennifer Young,A. Paley,Jian‐Hua Mao,Hang Chang
出处
期刊:Clinical & Translational Oncology [Springer Nature]
卷期号:24 (3): 597-604 被引量:25
标识
DOI:10.1007/s12094-021-02725-3
摘要

Prognosis of breast cancer (BC) patients differs considerably and identifying reliable prognostic biomarker(s) is imperative. With evidence that the microbiome plays a critical role in the response to cancer therapies, we aimed to identify a cancer microbiome signature for predicting the prognosis of BC patients.The TCGA BC microbiome data (TCGA-BRCA-microbiome) was downloaded from cBioPortal. Univariate and multivariate Cox regression analyses were used to examine association of microbial abundance with overall survival (OS) and to identify a microbial signature for creating a prognostic scoring model. The performance of the scoring model was assessed by the area under the ROC curve (AUC). Nomograms using the microbial signature, clinical factors, and molecular subtypes were established to predict OS and progression-free survival (PFS).Among 1406 genera, the abundances of 94 genera were significantly associated with BC patient OS in TCGA-BRCA-microbiome dataset. From that set we identified a 15-microbe prognostic signature and developed a 15-microbial abundance prognostic scoring (MAPS) model. Patients in low-risk group significantly prolong OS and PFS as compared to those in high-risk group. The time-dependent ROC curves with MAPS showed good predictive efficacy both in OS and PFS. Moreover, MAPS is an independent prognostic factor for OS and PFS over clinical factors and PAM50-based molecular subtypes and superior to the previously published 12-gene signature. The integration of MAPS into nomograms significantly improved prognosis prediction.MAPS was successfully established to have independent prognostic value, and our study provides a new avenue for developing prognostic biomarkers by microbiome profiling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玛卡巴卡完成签到 ,获得积分10
刚刚
77完成签到,获得积分10
1秒前
jingguofu完成签到 ,获得积分10
3秒前
小黄豆完成签到,获得积分10
4秒前
7秒前
吴晨曦完成签到,获得积分10
8秒前
山羊不吃兔完成签到 ,获得积分10
9秒前
123完成签到,获得积分10
9秒前
静翕完成签到 ,获得积分10
10秒前
komisan完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
坚定寒松完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
1111完成签到 ,获得积分10
21秒前
秋秋完成签到,获得积分10
22秒前
青青完成签到 ,获得积分10
22秒前
完美世界应助科研通管家采纳,获得10
23秒前
共享精神应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
23秒前
Jasper应助慕容飞凤采纳,获得10
23秒前
量子星尘发布了新的文献求助10
24秒前
顾城浪子完成签到,获得积分10
28秒前
有魅力胡萝卜完成签到,获得积分10
29秒前
七QI完成签到 ,获得积分10
30秒前
LIUJIE完成签到,获得积分10
31秒前
576-576完成签到 ,获得积分10
31秒前
smh完成签到 ,获得积分10
33秒前
李健应助有魅力胡萝卜采纳,获得10
33秒前
小武完成签到,获得积分10
33秒前
聂先生完成签到,获得积分10
37秒前
影像大侠完成签到,获得积分10
39秒前
xyzlancet完成签到,获得积分10
40秒前
MM完成签到 ,获得积分10
41秒前
唐唐完成签到,获得积分10
42秒前
WXyue完成签到 ,获得积分10
42秒前
耕牛热完成签到,获得积分10
43秒前
望凌烟完成签到,获得积分10
43秒前
量子星尘发布了新的文献求助10
44秒前
jiaojaioo完成签到,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869628
关于积分的说明 15108640
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536429
关于科研通互助平台的介绍 1494858