Identification of a novel cancer microbiome signature for predicting prognosis of human breast cancer patients

列线图 医学 微生物群 肿瘤科 乳腺癌 内科学 比例危险模型 单变量 生物标志物 癌症 多元统计 生物信息学 机器学习 生物 遗传学 计算机科学
作者
Aiqin Mao,H. Barck,Jennifer Young,A. Paley,Jian‐Hua Mao,Hang Chang
出处
期刊:Clinical & Translational Oncology [Springer Nature]
卷期号:24 (3): 597-604 被引量:25
标识
DOI:10.1007/s12094-021-02725-3
摘要

Prognosis of breast cancer (BC) patients differs considerably and identifying reliable prognostic biomarker(s) is imperative. With evidence that the microbiome plays a critical role in the response to cancer therapies, we aimed to identify a cancer microbiome signature for predicting the prognosis of BC patients.The TCGA BC microbiome data (TCGA-BRCA-microbiome) was downloaded from cBioPortal. Univariate and multivariate Cox regression analyses were used to examine association of microbial abundance with overall survival (OS) and to identify a microbial signature for creating a prognostic scoring model. The performance of the scoring model was assessed by the area under the ROC curve (AUC). Nomograms using the microbial signature, clinical factors, and molecular subtypes were established to predict OS and progression-free survival (PFS).Among 1406 genera, the abundances of 94 genera were significantly associated with BC patient OS in TCGA-BRCA-microbiome dataset. From that set we identified a 15-microbe prognostic signature and developed a 15-microbial abundance prognostic scoring (MAPS) model. Patients in low-risk group significantly prolong OS and PFS as compared to those in high-risk group. The time-dependent ROC curves with MAPS showed good predictive efficacy both in OS and PFS. Moreover, MAPS is an independent prognostic factor for OS and PFS over clinical factors and PAM50-based molecular subtypes and superior to the previously published 12-gene signature. The integration of MAPS into nomograms significantly improved prognosis prediction.MAPS was successfully established to have independent prognostic value, and our study provides a new avenue for developing prognostic biomarkers by microbiome profiling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张振宇完成签到 ,获得积分0
刚刚
1秒前
负责青亦发布了新的文献求助10
1秒前
Jane完成签到,获得积分10
1秒前
jagger发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
小二郎应助Epiphany采纳,获得10
2秒前
慕青应助Xiaoqiang采纳,获得10
2秒前
yueguang发布了新的文献求助10
2秒前
haoliu完成签到,获得积分10
3秒前
Wxj246801发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
xx关注了科研通微信公众号
3秒前
思路从后发布了新的文献求助10
4秒前
希望天下0贩的0应助aaaa采纳,获得10
4秒前
冲冲完成签到,获得积分10
4秒前
蓝天发布了新的文献求助10
6秒前
7秒前
做的出来发布了新的文献求助10
7秒前
7秒前
AUM123发布了新的文献求助10
8秒前
8秒前
素浅发布了新的文献求助10
9秒前
9秒前
bai发布了新的文献求助10
9秒前
10秒前
李志华发布了新的文献求助10
10秒前
wu发布了新的文献求助10
11秒前
xueshu发布了新的文献求助10
11秒前
7444完成签到,获得积分20
11秒前
12秒前
PINKRAY0417完成签到 ,获得积分10
13秒前
13秒前
13秒前
嘿嘿应助变形金刚采纳,获得10
14秒前
7444发布了新的文献求助10
14秒前
14秒前
小蛋花儿完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684634
求助须知:如何正确求助?哪些是违规求助? 5037948
关于积分的说明 15184748
捐赠科研通 4843860
什么是DOI,文献DOI怎么找? 2596968
邀请新用户注册赠送积分活动 1549572
关于科研通互助平台的介绍 1508077