Identification of a novel cancer microbiome signature for predicting prognosis of human breast cancer patients

列线图 医学 微生物群 肿瘤科 乳腺癌 内科学 比例危险模型 单变量 生物标志物 癌症 多元统计 生物信息学 机器学习 生物 遗传学 计算机科学
作者
Aiqin Mao,H. Barck,Jennifer Young,A. Paley,Jian‐Hua Mao,Hang Chang
出处
期刊:Clinical & Translational Oncology [Springer Nature]
卷期号:24 (3): 597-604 被引量:25
标识
DOI:10.1007/s12094-021-02725-3
摘要

Prognosis of breast cancer (BC) patients differs considerably and identifying reliable prognostic biomarker(s) is imperative. With evidence that the microbiome plays a critical role in the response to cancer therapies, we aimed to identify a cancer microbiome signature for predicting the prognosis of BC patients.The TCGA BC microbiome data (TCGA-BRCA-microbiome) was downloaded from cBioPortal. Univariate and multivariate Cox regression analyses were used to examine association of microbial abundance with overall survival (OS) and to identify a microbial signature for creating a prognostic scoring model. The performance of the scoring model was assessed by the area under the ROC curve (AUC). Nomograms using the microbial signature, clinical factors, and molecular subtypes were established to predict OS and progression-free survival (PFS).Among 1406 genera, the abundances of 94 genera were significantly associated with BC patient OS in TCGA-BRCA-microbiome dataset. From that set we identified a 15-microbe prognostic signature and developed a 15-microbial abundance prognostic scoring (MAPS) model. Patients in low-risk group significantly prolong OS and PFS as compared to those in high-risk group. The time-dependent ROC curves with MAPS showed good predictive efficacy both in OS and PFS. Moreover, MAPS is an independent prognostic factor for OS and PFS over clinical factors and PAM50-based molecular subtypes and superior to the previously published 12-gene signature. The integration of MAPS into nomograms significantly improved prognosis prediction.MAPS was successfully established to have independent prognostic value, and our study provides a new avenue for developing prognostic biomarkers by microbiome profiling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助jianwenhao采纳,获得10
刚刚
lyh发布了新的文献求助10
1秒前
1秒前
mouxq发布了新的文献求助10
1秒前
2秒前
科研通AI6应助嘻嘻采纳,获得10
2秒前
LiM完成签到,获得积分10
2秒前
希望天下0贩的0应助kkr采纳,获得10
2秒前
2秒前
3秒前
晓月发布了新的文献求助10
3秒前
无花果应助迪迦采纳,获得10
4秒前
4秒前
4秒前
Susie完成签到,获得积分10
4秒前
5秒前
5秒前
开心颜完成签到,获得积分10
5秒前
orixero应助夕未息采纳,获得10
5秒前
光亮的太阳完成签到,获得积分10
5秒前
王敏娜完成签到 ,获得积分10
5秒前
灯灯发布了新的文献求助10
5秒前
asstman完成签到,获得积分10
5秒前
6秒前
李健应助冷泡泡采纳,获得10
6秒前
6秒前
微生完成签到,获得积分10
6秒前
6秒前
LJHUA完成签到,获得积分10
6秒前
乐乐完成签到,获得积分10
6秒前
华仔应助1223采纳,获得20
7秒前
8秒前
8秒前
李晓彤完成签到,获得积分10
8秒前
平淡丹寒完成签到,获得积分20
8秒前
科目三应助kbc采纳,获得10
8秒前
song完成签到 ,获得积分10
8秒前
长情洙完成签到,获得积分10
8秒前
微生发布了新的文献求助10
9秒前
小蘑菇应助辛勤面包采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285