Identification of a novel cancer microbiome signature for predicting prognosis of human breast cancer patients

列线图 医学 微生物群 肿瘤科 乳腺癌 内科学 比例危险模型 单变量 生物标志物 癌症 多元统计 生物信息学 机器学习 生物 遗传学 计算机科学
作者
Aiqin Mao,H. Barck,Jennifer Young,A. Paley,Jian‐Hua Mao,Hang Chang
出处
期刊:Clinical & Translational Oncology [Springer Nature]
卷期号:24 (3): 597-604 被引量:18
标识
DOI:10.1007/s12094-021-02725-3
摘要

Prognosis of breast cancer (BC) patients differs considerably and identifying reliable prognostic biomarker(s) is imperative. With evidence that the microbiome plays a critical role in the response to cancer therapies, we aimed to identify a cancer microbiome signature for predicting the prognosis of BC patients.The TCGA BC microbiome data (TCGA-BRCA-microbiome) was downloaded from cBioPortal. Univariate and multivariate Cox regression analyses were used to examine association of microbial abundance with overall survival (OS) and to identify a microbial signature for creating a prognostic scoring model. The performance of the scoring model was assessed by the area under the ROC curve (AUC). Nomograms using the microbial signature, clinical factors, and molecular subtypes were established to predict OS and progression-free survival (PFS).Among 1406 genera, the abundances of 94 genera were significantly associated with BC patient OS in TCGA-BRCA-microbiome dataset. From that set we identified a 15-microbe prognostic signature and developed a 15-microbial abundance prognostic scoring (MAPS) model. Patients in low-risk group significantly prolong OS and PFS as compared to those in high-risk group. The time-dependent ROC curves with MAPS showed good predictive efficacy both in OS and PFS. Moreover, MAPS is an independent prognostic factor for OS and PFS over clinical factors and PAM50-based molecular subtypes and superior to the previously published 12-gene signature. The integration of MAPS into nomograms significantly improved prognosis prediction.MAPS was successfully established to have independent prognostic value, and our study provides a new avenue for developing prognostic biomarkers by microbiome profiling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ak完成签到,获得积分0
刚刚
田小班发布了新的文献求助10
1秒前
Irene发布了新的文献求助10
1秒前
认真日记本完成签到 ,获得积分10
1秒前
www发布了新的文献求助10
1秒前
2秒前
桐桐应助哈哈哈哈哈哈采纳,获得10
2秒前
李小莉0419发布了新的文献求助10
2秒前
Ava应助MC采纳,获得10
3秒前
baobaot发布了新的文献求助30
3秒前
3秒前
承乐应助小豆包采纳,获得10
3秒前
英姑应助小豆包采纳,获得10
3秒前
秋寒完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
斯文败类应助mikiisme采纳,获得10
5秒前
algain完成签到,获得积分10
5秒前
Wizzzzzzzy发布了新的文献求助10
5秒前
necos发布了新的文献求助10
8秒前
8秒前
9秒前
fmx完成签到,获得积分10
9秒前
残剑月发布了新的文献求助10
10秒前
10秒前
weihongjuan发布了新的文献求助10
10秒前
帅气的馒头应助酷炫初雪采纳,获得10
10秒前
janette完成签到,获得积分10
11秒前
爆米花应助乌衣白马采纳,获得10
11秒前
11秒前
财神爷心尖尖的宝儿完成签到,获得积分10
12秒前
zyc发布了新的文献求助10
12秒前
nn完成签到,获得积分20
12秒前
阿屁屁猪完成签到,获得积分10
14秒前
14秒前
TearMarks完成签到 ,获得积分10
14秒前
小白发布了新的文献求助200
14秒前
14秒前
酷波er应助baobaot采纳,获得10
15秒前
勿忘9451发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836