催化作用
材料科学
化学工程
制氢
热液循环
甲醇
化学
相(物质)
氢
水溶液
水热合成
无机化学
纳米颗粒
纳米技术
有机化学
工程类
作者
Zefeng Zheng,Yanxiong Fang,Jianhan Yang,Liang Ma,Qingwei Meng,Xi Lin,Yujia Liu,Qian Zhang,Tiejun Wang
标识
DOI:10.1016/j.ijhydene.2021.10.070
摘要
Aqueous-phase reforming (APR) of methanol provides a safe way to store and transport hydrogen by in situ production of H2. It remains, however, a challenge to develop an efficient and hydrothermal-stable non-noble-metal catalyst. Herein, a robust Cu/[email protected] catalyst is successfully constructed by encapsulating Cu/ZnO species in nitrogen-doped carbon (NC), using ZIF-8 as precursor. It is demonstrated that the activity for APR of methanol increases exponentially with rise of catalyst wettability. With good wettability, a high hydrogen releasing rate of 146.9 μmol·gcat−1·s−1 is achieved on the 27%Cu/[email protected] catalyst at 230 °C, about four times higher than that of a traditional 29%Cu/ZnO catalyst, and surprisingly comparable to a commercial Pt/C catalyst. Notably, Cu/[email protected] also shows excellent stability, as the NC coating protects ZnO from hydrolyzing and prevents aggregation of Cu nanoparticle largely in the severe aqueous-phase-reaction conditions. This work develops a convenient method to prepare efficient and hydrothermal-stable catalyst with commercial potential.
科研通智能强力驱动
Strongly Powered by AbleSci AI