Domain Knowledge Powered Deep Learning for Breast Cancer Diagnosis Based on Contrast-Enhanced Ultrasound Videos

超声造影 计算机科学 人工智能 深度学习 乳腺癌 领域知识 人工神经网络 卷积神经网络 过程(计算) 灵敏度(控制系统) 乳腺摄影术 对比度(视觉) 超声波 乳腺超声检查 模式识别(心理学) 机器学习 领域(数学分析) 放射科 癌症 医学 内科学 数学分析 工程类 操作系统 数学 电子工程
作者
Chen Chen,Yong Wang,Jianwei Niu,Xuefeng Liu,Qingfeng Li,Xuantong Gong
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (9): 2439-2451 被引量:83
标识
DOI:10.1109/tmi.2021.3078370
摘要

In recent years, deep learning has been widely used in breast cancer diagnosis, and many high-performance models have emerged. However, most of the existing deep learning models are mainly based on static breast ultrasound (US) images. In actual diagnostic process, contrast-enhanced ultrasound (CEUS) is a commonly used technique by radiologists. Compared with static breast US images, CEUS videos can provide more detailed blood supply information of tumors, and therefore can help radiologists make a more accurate diagnosis. In this paper, we propose a novel diagnosis model based on CEUS videos. The backbone of the model is a 3D convolutional neural network. More specifically, we notice that radiologists generally follow two specific patterns when browsing CEUS videos. One pattern is that they focus on specific time slots, and the other is that they pay attention to the differences between the CEUS frames and the corresponding US images. To incorporate these two patterns into our deep learning model, we design a domain-knowledge-guided temporal attention module and a channel attention module. We validate our model on our Breast-CEUS dataset composed of 221 cases. The result shows that our model can achieve a sensitivity of 97.2% and an accuracy of 86.3%. In particular, the incorporation of domain knowledge leads to a 3.5% improvement in sensitivity and a 6.0% improvement in specificity. Finally, we also prove the validity of two domain knowledge modules in the 3D convolutional neural network (C3D) and the 3D ResNet (R3D).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111chen发布了新的文献求助10
刚刚
1秒前
ssshuang完成签到,获得积分10
1秒前
1秒前
2秒前
情怀应助心灵美白玉采纳,获得10
3秒前
柏白凝发布了新的文献求助10
3秒前
氼乚发布了新的文献求助10
5秒前
Wanfeng完成签到,获得积分10
5秒前
小白发布了新的文献求助10
5秒前
5秒前
6秒前
华仔应助容我想想采纳,获得10
6秒前
小玲仔发布了新的文献求助10
6秒前
zdesfsfa发布了新的文献求助10
8秒前
gds2021发布了新的文献求助10
8秒前
薄荷糖发布了新的文献求助10
8秒前
彭于晏应助lx采纳,获得10
9秒前
9秒前
10秒前
11秒前
tu123发布了新的文献求助10
12秒前
严惜完成签到,获得积分10
12秒前
FashionBoy应助小周碎碎念采纳,获得10
13秒前
勤奋西牛发布了新的文献求助10
15秒前
ding应助活力盼晴采纳,获得10
16秒前
sunsunsun完成签到,获得积分10
16秒前
ChenkLuo发布了新的文献求助10
16秒前
陳钧浩完成签到,获得积分10
17秒前
温言叮叮铛完成签到,获得积分10
17秒前
SciGPT应助卜卜大王采纳,获得10
17秒前
薄荷糖完成签到,获得积分10
17秒前
sdh完成签到,获得积分10
18秒前
Irving完成签到,获得积分10
18秒前
Jasmine发布了新的文献求助10
20秒前
anguo给anguo的求助进行了留言
21秒前
科研通AI2S应助111采纳,获得10
22秒前
22秒前
22秒前
宇一一发布了新的文献求助10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305612
求助须知:如何正确求助?哪些是违规求助? 2939343
关于积分的说明 8493224
捐赠科研通 2613787
什么是DOI,文献DOI怎么找? 1427585
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647916