Missing Data Repairs for Traffic Flow With Self-Attention Generative Adversarial Imputation Net

插补(统计学) 数据挖掘 计算机科学 缺少数据 数据建模 人工神经网络 对抗制 生成模型 生成对抗网络 生成语法 人工智能 机器学习 深度学习 数据库
作者
Weibin Zhang,Pulin Zhang,Yinghao Yu,Xiying Li,Salvatore Antonio Biancardo,Junyi Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (7): 7919-7930 被引量:94
标识
DOI:10.1109/tits.2021.3074564
摘要

With the rapid development of sensor technologies, time series data collected by multiple and spatially distributed sensors have been widely used in different research fields. Examples of such data include geo-tagged temperature data collected by temperature sensors, air pollutant monitoring data, and traffic data collected by road traffic sensors. Due to sensor failure, communication errors and storage loss, etc., data collected by sensors inevitably includes missing data. However, models commonly used in the analysis of such large-scale data often rely on complete data sets. This paper proposes a model for the imputation of missing data of traffic flow, which combines a self-attention mechanism, an auto-encoder, and a generative adversarial network, into a self-attention generative adversarial imputation net (SA-GAIN). The introduction of the self-attention mechanism can help the proposed model to effectively capture correlations between spatially-distributed sensors at different time points. Adversarial training through two neural networks, called generators and discriminators, allows the proposed model to generate imputed data close to the real data. In comparison with different imputation models, the proposed model shows the best performance in imputing missing data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
萝卜卜完成签到,获得积分10
1秒前
66完成签到,获得积分10
3秒前
3秒前
Owen应助学术小天才采纳,获得10
3秒前
雪山飞龙发布了新的文献求助10
3秒前
fpxxx完成签到,获得积分10
4秒前
4秒前
5秒前
简单的千凝完成签到,获得积分10
6秒前
Gray发布了新的文献求助10
6秒前
天天快乐应助文艺鞋子采纳,获得10
7秒前
woaihaohao发布了新的文献求助10
7秒前
muyu发布了新的文献求助10
8秒前
我是老大应助juaner采纳,获得10
8秒前
zzzzzaaw完成签到,获得积分10
8秒前
冷静妙海发布了新的文献求助10
8秒前
8秒前
爆米花应助橘子sungua采纳,获得10
9秒前
9秒前
fan完成签到,获得积分20
9秒前
9秒前
ZHH发布了新的文献求助10
9秒前
9秒前
9秒前
yfq1018完成签到,获得积分20
10秒前
DamenS发布了新的文献求助10
11秒前
端庄的紫发布了新的文献求助10
11秒前
11秒前
阿柠完成签到,获得积分10
11秒前
Gray完成签到,获得积分10
12秒前
12秒前
坦率书本发布了新的文献求助10
12秒前
回忆应助chenxun采纳,获得10
13秒前
hana完成签到 ,获得积分10
13秒前
14秒前
16秒前
muyu完成签到,获得积分10
16秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5621033
求助须知:如何正确求助?哪些是违规求助? 4705750
关于积分的说明 14933493
捐赠科研通 4764401
什么是DOI,文献DOI怎么找? 2551437
邀请新用户注册赠送积分活动 1513993
关于科研通互助平台的介绍 1474742