Missing Data Repairs for Traffic Flow With Self-Attention Generative Adversarial Imputation Net

插补(统计学) 数据挖掘 计算机科学 缺少数据 数据建模 人工神经网络 对抗制 生成模型 生成对抗网络 生成语法 人工智能 机器学习 深度学习 数据库
作者
Weibin Zhang,Pulin Zhang,Yinghao Yu,Xiying Li,Salvatore Antonio Biancardo,Junyi Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (7): 7919-7930 被引量:94
标识
DOI:10.1109/tits.2021.3074564
摘要

With the rapid development of sensor technologies, time series data collected by multiple and spatially distributed sensors have been widely used in different research fields. Examples of such data include geo-tagged temperature data collected by temperature sensors, air pollutant monitoring data, and traffic data collected by road traffic sensors. Due to sensor failure, communication errors and storage loss, etc., data collected by sensors inevitably includes missing data. However, models commonly used in the analysis of such large-scale data often rely on complete data sets. This paper proposes a model for the imputation of missing data of traffic flow, which combines a self-attention mechanism, an auto-encoder, and a generative adversarial network, into a self-attention generative adversarial imputation net (SA-GAIN). The introduction of the self-attention mechanism can help the proposed model to effectively capture correlations between spatially-distributed sensors at different time points. Adversarial training through two neural networks, called generators and discriminators, allows the proposed model to generate imputed data close to the real data. In comparison with different imputation models, the proposed model shows the best performance in imputing missing data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭6666发布了新的文献求助10
1秒前
完美世界应助留胡子的火采纳,获得10
6秒前
脑洞疼应助郭6666采纳,获得10
6秒前
公冶愚志完成签到,获得积分10
9秒前
威武的皮卡丘完成签到,获得积分10
15秒前
15秒前
15秒前
大龙哥886应助ri_290采纳,获得10
16秒前
sevenhill应助Devastating采纳,获得10
18秒前
18秒前
今后应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
Orange应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得30
19秒前
拼搏应助科研通管家采纳,获得10
19秒前
无花果应助科研通管家采纳,获得20
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
小新应助科研通管家采纳,获得10
19秒前
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
鬼切关注了科研通微信公众号
19秒前
天天快乐应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
无极微光应助科研通管家采纳,获得20
19秒前
scaler完成签到,获得积分10
20秒前
21秒前
xinbowey发布了新的文献求助10
21秒前
xiao完成签到 ,获得积分10
23秒前
24秒前
默默早晨完成签到 ,获得积分10
25秒前
yang发布了新的文献求助10
27秒前
科研通AI6应助Jodie采纳,获得10
29秒前
二次元喵酱完成签到,获得积分10
29秒前
xinbowey完成签到,获得积分10
29秒前
鬼切发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555