Missing Data Repairs for Traffic Flow With Self-Attention Generative Adversarial Imputation Net

插补(统计学) 数据挖掘 计算机科学 缺少数据 数据建模 人工神经网络 对抗制 生成模型 生成对抗网络 生成语法 人工智能 机器学习 深度学习 数据库
作者
Weibin Zhang,Pulin Zhang,Yinghao Yu,Xiying Li,Salvatore Antonio Biancardo,Junyi Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (7): 7919-7930 被引量:47
标识
DOI:10.1109/tits.2021.3074564
摘要

With the rapid development of sensor technologies, time series data collected by multiple and spatially distributed sensors have been widely used in different research fields. Examples of such data include geo-tagged temperature data collected by temperature sensors, air pollutant monitoring data, and traffic data collected by road traffic sensors. Due to sensor failure, communication errors and storage loss, etc., data collected by sensors inevitably includes missing data. However, models commonly used in the analysis of such large-scale data often rely on complete data sets. This paper proposes a model for the imputation of missing data of traffic flow, which combines a self-attention mechanism, an auto-encoder, and a generative adversarial network, into a self-attention generative adversarial imputation net (SA-GAIN). The introduction of the self-attention mechanism can help the proposed model to effectively capture correlations between spatially-distributed sensors at different time points. Adversarial training through two neural networks, called generators and discriminators, allows the proposed model to generate imputed data close to the real data. In comparison with different imputation models, the proposed model shows the best performance in imputing missing data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmmio发布了新的文献求助30
1秒前
TT完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
4秒前
赘婿应助XD.东采纳,获得10
4秒前
radish完成签到,获得积分10
4秒前
向晚完成签到,获得积分10
5秒前
红莲墨生完成签到,获得积分10
5秒前
5秒前
蓝莓松饼完成签到,获得积分10
6秒前
7秒前
9秒前
蓝莓松饼发布了新的文献求助10
10秒前
瞿霞完成签到 ,获得积分10
10秒前
龙抬头完成签到,获得积分10
10秒前
Asoqiang发布了新的文献求助10
11秒前
11秒前
一二三四五完成签到,获得积分10
11秒前
ymmmaomao23发布了新的文献求助10
11秒前
12秒前
13秒前
淡定汉堡发布了新的文献求助10
14秒前
14秒前
zojoy完成签到,获得积分10
14秒前
15秒前
15秒前
心灵美鑫完成签到 ,获得积分10
16秒前
无极完成签到 ,获得积分10
17秒前
zzz发布了新的文献求助10
17秒前
DrJiang完成签到,获得积分10
18秒前
岳小龙完成签到 ,获得积分10
18秒前
脑洞疼应助懒洋洋采纳,获得10
19秒前
20秒前
XD.东发布了新的文献求助10
20秒前
asd发布了新的文献求助10
20秒前
yyk发布了新的文献求助10
20秒前
淡定汉堡完成签到,获得积分10
20秒前
22秒前
Akim应助吗喽采纳,获得10
23秒前
now发布了新的文献求助10
23秒前
二指弹完成签到 ,获得积分10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010961
求助须知:如何正确求助?哪些是违规求助? 3550599
关于积分的说明 11306013
捐赠科研通 3284931
什么是DOI,文献DOI怎么找? 1810918
邀请新用户注册赠送积分活动 886594
科研通“疑难数据库(出版商)”最低求助积分说明 811514