An Ising Hamiltonian solver based on coupled stochastic phase-transition nano-oscillators

伊辛模型 解算器 哈密顿量(控制论) 量子退火 物理 模拟退火 基态 量子计算机 数学 统计物理学 计算机科学 相变 量子 量子力学 算法 数学优化
作者
Sourav Dutta,Abhishek Khanna,Adou Sangbone Assoa,Hanjong Paik,Darrell G. Schlom,Zoltán Toroczkai,Arijit Raychowdhury,Suman Datta
出处
期刊:Nature electronics [Nature Portfolio]
卷期号:4 (7): 502-512 被引量:111
标识
DOI:10.1038/s41928-021-00616-7
摘要

Combinatorial optimization problems belong to the non-deterministic polynomial time (NP)-hard complexity class, and their computational requirements scale exponentially with problem size. They can be mapped into the problem of finding the ground state of an Ising model, which describes a physical system with converging dynamics. Various platforms, including optical, electronic and quantum approaches, have been explored to accelerate the ground-state search, but improvements in energy efficiencies and computational abilities are still required. Here we report an Ising solver based on a network of electrically coupled phase-transition nano-oscillators (PTNOs) that form a continuous-time dynamical system (CTDS). The bi-stable phases of the injection-locked PTNOs act as artificial Ising spins and the stable points of the CTDS act as the ground-state solution of the problem. We experimentally show that a prototype with eight PTNOs can solve an NP-hard MaxCut problem with high probability of success (96% for 600 annealing cycles). We also show via numerical simulations that our Ising Hamiltonian solver can solve MaxCut problems of 100 nodes with energy efficiency of 1.3 × 107 solutions per second per watt, offering advantages over other approaches including memristor-based Hopfield networks, quantum annealers and photonic Ising solvers. An Ising solver that is based on a network of electrically coupled phase-transition nano-oscillators, which provides a continuous-time dynamical system, can be used to efficiently solve a non-deterministic polynomial time (NP)-hard MaxCut problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
典雅棒棒糖完成签到 ,获得积分10
1秒前
流流124141完成签到,获得积分10
5秒前
5秒前
xyzs完成签到,获得积分10
5秒前
carbon-dots发布了新的文献求助10
5秒前
Orange应助777采纳,获得10
8秒前
9秒前
9秒前
谢香辣完成签到,获得积分10
11秒前
14秒前
子云完成签到,获得积分10
15秒前
PlanetaryLayer完成签到,获得积分10
15秒前
吃猫的鱼发布了新的文献求助10
16秒前
达达发布了新的文献求助10
18秒前
香蕉觅云应助健忘的曼卉采纳,获得10
18秒前
nice糊涂慧完成签到,获得积分10
19秒前
CipherSage应助6633采纳,获得10
21秒前
实验好难应助成就随阴采纳,获得10
22秒前
23秒前
安详砖家完成签到 ,获得积分10
26秒前
28秒前
30秒前
达达完成签到 ,获得积分20
31秒前
32秒前
罗拉发布了新的文献求助10
34秒前
quantumdot发布了新的文献求助10
34秒前
醉熏的天薇完成签到,获得积分10
34秒前
geyunjie完成签到,获得积分10
36秒前
37秒前
niu应助zzz采纳,获得10
37秒前
JQKing发布了新的文献求助10
38秒前
39秒前
可达鸭完成签到,获得积分20
39秒前
39秒前
walden发布了新的文献求助10
41秒前
若尘应助罗拉采纳,获得10
41秒前
41秒前
777发布了新的文献求助10
44秒前
45秒前
可达鸭发布了新的文献求助30
46秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738565
求助须知:如何正确求助?哪些是违规求助? 3281918
关于积分的说明 10026959
捐赠科研通 2998717
什么是DOI,文献DOI怎么找? 1645425
邀请新用户注册赠送积分活动 782788
科研通“疑难数据库(出版商)”最低求助积分说明 749931