亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Effect of a deep learning-based system on the miss rate of gastric neoplasms during upper gastrointestinal endoscopy: a single-centre, tandem, randomised controlled trial

医学 内窥镜检查 临床试验 临床终点 随机对照试验 外科 癌症 内科学
作者
Lianlian Wu,Renduo Shang,Prateek Sharma,Wei Zhou,Jun Liu,Liwen Yao,Zehua Dong,Jingping Yuan,Zhi Zeng,Yuanjie Yu,Chunping He,Qiutang Xiong,Yanxia Li,Yunchao Deng,Zhuo Cao,Chao Huang,Rui Zhou,Hongyan Li,Guiying Hu,Yiyun Chen
出处
期刊:The Lancet Gastroenterology & Hepatology [Elsevier]
卷期号:6 (9): 700-708 被引量:113
标识
DOI:10.1016/s2468-1253(21)00216-8
摘要

White light endoscopy is a pivotal first-line tool for the detection of gastric neoplasms. However, gastric neoplasms can be missed during upper gastrointestinal endoscopy due to the subtle nature of these lesions and varying skill among endoscopists. Here, we aimed to evaluate the effect of an artificial intelligence (AI) system designed to detect focal lesions and diagnose gastric neoplasms on reducing the miss rate of gastric neoplasms in clinical practice.This single-centre, randomised controlled, tandem trial was done at Renmin Hospital of Wuhan University, China. We recruited consecutive patients (≥18 years old) undergoing routine upper gastrointestinal endoscopy for screening, surveillance, or investigation of symptoms. Same-day tandem upper gastrointestinal endoscopy was done where patients first underwent either AI-assisted (AI-first) or routine (routine-first) white light endoscopy, followed immediately by the other procedure, with targeted biopsies for all detected lesions taken at the end of the second examination. Patients were randomly assigned (1:1) to the AI-first or routine-first group using a computer-generated random numerical series and block randomisation (block size of four). Endoscopists were not blinded to randomisation status, whereas patients and pathologists were. The primary endpoint was the miss rate of gastric neoplasms and the analysis was done per protocol. This trial is registered with the Chinese Clinical Trial Registry, ChiCTR2000034453, and has been completed.Between July 6, 2020, and Dec 11, 2020, 907 patients were randomly assigned to the AI-first group and 905 to the routine-first group. The gastric neoplasm miss rate was significantly lower in the AI-first group than in the routine-first group (6·1%, 95% CI 1·6-17·9 [3/49] vs 27·3%, 15·5-43·0 [12/44]; relative risk 0·224, 95% CI 0·068-0·744; p=0·015). The only reported adverse event was bleeding from a target lesion after biopsy.The use of an AI system during upper gastrointestinal endoscopy significantly reduced the gastric neoplasm miss rate. AI-assisted endoscopy has the potential to improve the yield of gastric neoplasms by endoscopists.The Project of Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision and the Hubei Province Major Science and Technology Innovation Project.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
flyinthesky完成签到,获得积分10
13秒前
Akim应助morena采纳,获得10
14秒前
盛夏如花发布了新的文献求助10
15秒前
lxl完成签到,获得积分10
24秒前
xiaowei完成签到,获得积分20
27秒前
SciGPT应助小唐采纳,获得10
29秒前
张晓祁完成签到,获得积分10
33秒前
生动的沛白完成签到 ,获得积分10
34秒前
爆米花应助搞怪的砖家采纳,获得10
37秒前
JamesPei应助ABC的风格采纳,获得10
42秒前
李y梅子完成签到 ,获得积分10
42秒前
43秒前
yueying完成签到,获得积分10
44秒前
49秒前
49秒前
54秒前
猫橙密语发布了新的文献求助80
55秒前
1分钟前
ABC的风格发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
脑洞疼应助潘瑞采纳,获得10
1分钟前
图图发布了新的文献求助10
1分钟前
1分钟前
搞怪的砖家完成签到,获得积分20
1分钟前
1分钟前
zqq完成签到,获得积分0
1分钟前
1分钟前
1分钟前
颖中竹子完成签到,获得积分10
1分钟前
可靠的一手完成签到 ,获得积分10
1分钟前
2分钟前
君莫笑发布了新的文献求助10
2分钟前
2分钟前
2分钟前
明理的蜗牛完成签到,获得积分10
2分钟前
科研通AI6应助图图采纳,获得10
2分钟前
君莫笑发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657897
求助须知:如何正确求助?哪些是违规求助? 4813963
关于积分的说明 15080602
捐赠科研通 4816131
什么是DOI,文献DOI怎么找? 2577136
邀请新用户注册赠送积分活动 1532156
关于科研通互助平台的介绍 1490689