Effect of a deep learning-based system on the miss rate of gastric neoplasms during upper gastrointestinal endoscopy: a single-centre, tandem, randomised controlled trial

医学 内窥镜检查 临床试验 临床终点 随机对照试验 外科 癌症 内科学
作者
Lianlian Wu,Renduo Shang,Prateek Sharma,Wei Zhou,Jun Liu,Liwen Yao,Zehua Dong,Jingping Yuan,Zhi Zeng,Yuanjie Yu,Chunping He,Qiutang Xiong,Yanxia Li,Yunchao Deng,Zhuo Cao,Chao Huang,Rui Zhou,Hongyan Li,Guiying Hu,Yiyun Chen
出处
期刊:The Lancet Gastroenterology & Hepatology [Elsevier]
卷期号:6 (9): 700-708 被引量:110
标识
DOI:10.1016/s2468-1253(21)00216-8
摘要

White light endoscopy is a pivotal first-line tool for the detection of gastric neoplasms. However, gastric neoplasms can be missed during upper gastrointestinal endoscopy due to the subtle nature of these lesions and varying skill among endoscopists. Here, we aimed to evaluate the effect of an artificial intelligence (AI) system designed to detect focal lesions and diagnose gastric neoplasms on reducing the miss rate of gastric neoplasms in clinical practice.This single-centre, randomised controlled, tandem trial was done at Renmin Hospital of Wuhan University, China. We recruited consecutive patients (≥18 years old) undergoing routine upper gastrointestinal endoscopy for screening, surveillance, or investigation of symptoms. Same-day tandem upper gastrointestinal endoscopy was done where patients first underwent either AI-assisted (AI-first) or routine (routine-first) white light endoscopy, followed immediately by the other procedure, with targeted biopsies for all detected lesions taken at the end of the second examination. Patients were randomly assigned (1:1) to the AI-first or routine-first group using a computer-generated random numerical series and block randomisation (block size of four). Endoscopists were not blinded to randomisation status, whereas patients and pathologists were. The primary endpoint was the miss rate of gastric neoplasms and the analysis was done per protocol. This trial is registered with the Chinese Clinical Trial Registry, ChiCTR2000034453, and has been completed.Between July 6, 2020, and Dec 11, 2020, 907 patients were randomly assigned to the AI-first group and 905 to the routine-first group. The gastric neoplasm miss rate was significantly lower in the AI-first group than in the routine-first group (6·1%, 95% CI 1·6-17·9 [3/49] vs 27·3%, 15·5-43·0 [12/44]; relative risk 0·224, 95% CI 0·068-0·744; p=0·015). The only reported adverse event was bleeding from a target lesion after biopsy.The use of an AI system during upper gastrointestinal endoscopy significantly reduced the gastric neoplasm miss rate. AI-assisted endoscopy has the potential to improve the yield of gastric neoplasms by endoscopists.The Project of Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision and the Hubei Province Major Science and Technology Innovation Project.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老婆婆完成签到,获得积分10
刚刚
Sience完成签到,获得积分10
刚刚
2秒前
4秒前
4秒前
火龙果色素完成签到,获得积分10
4秒前
子车茗应助冷傲老头采纳,获得20
6秒前
7秒前
长长的名字完成签到 ,获得积分10
11秒前
斯文败类应助jila采纳,获得10
12秒前
15秒前
Hello应助嘿嘿采纳,获得10
16秒前
可可可可汁完成签到 ,获得积分10
19秒前
无奈的尔容完成签到,获得积分10
21秒前
Xiaohu完成签到,获得积分10
22秒前
XIEQ发布了新的文献求助10
23秒前
23秒前
科研通AI6应助yyanxuemin919采纳,获得10
25秒前
25秒前
27秒前
29秒前
一头猪发布了新的文献求助10
30秒前
Bazinga完成签到,获得积分10
30秒前
嗯嗯嗯完成签到,获得积分10
31秒前
懒鲸鱼给懒鲸鱼的求助进行了留言
31秒前
32秒前
嘿嘿发布了新的文献求助10
32秒前
able完成签到 ,获得积分10
33秒前
34秒前
嗯嗯嗯发布了新的文献求助10
35秒前
丘比特应助度ewf采纳,获得10
36秒前
丽丽丽发布了新的文献求助10
36秒前
yyanxuemin919发布了新的文献求助10
36秒前
蘑菇完成签到 ,获得积分10
39秒前
jam发布了新的文献求助10
39秒前
40秒前
烟花应助ccc采纳,获得10
41秒前
拉长的诗蕊完成签到,获得积分10
41秒前
42秒前
大妙妙完成签到 ,获得积分10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563579
求助须知:如何正确求助?哪些是违规求助? 4648467
关于积分的说明 14685031
捐赠科研通 4590445
什么是DOI,文献DOI怎么找? 2518519
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432