预加载
形状记忆合金
控制(管理)
材料科学
结构工程
冶金
控制理论(社会学)
工程类
计算机科学
医学
心脏病学
人工智能
血流动力学
作者
Berend Denkena,Benjamin Bergmann,Christian Teige
出处
期刊:Social Science Research Network
[Social Science Electronic Publishing]
日期:2020-01-01
摘要
Commercial, motor-driven spindles for applications in machine tools are generally developed for specific machining operations. Spindles can be distinguished between spindles for HPC (High Performance Cutting) and spindles for HSC (High Speed Cutting). HPC and HSC require opposing specifications concerning motor configuration and the preload of the spindle bearings. To realize a universal machine tool spindle, changeable motor configuration and preload of the spindle bearings are necessary. In this paper, a new approach for an adaptive preload element is presented to control the preload of a spindle bearing arrangement. The adaptive preload element consists of actuators based on shape memory alloys in combination with Peltier elements. By controlling the current through the Peltier elements the temperature of shape memory alloys bending springs is controlled. Thus, the preload force of the bending springs can be variated. Experimental tests reveal the properties of the preload element and its suitability for preload modification. Within these tests, the adaptive preload element enables a preload modification of about 850 N.
科研通智能强力驱动
Strongly Powered by AbleSci AI