Object‐based large‐scale terrain classification combined with segmentation optimization and terrain features: A case study in China

地形 地形地貌 数字高程模型 随机森林 分割 人工智能 地图学 计算机科学 基于对象 比例(比率) 遥感 地质学 地理 模式识别(心理学) 对象(语法)
作者
Jiaming Na,Hu Ding,Wufan Zhao,Kai Liu,Guoan Tang,Norbert Pfeifer
出处
期刊:Transactions in Gis [Wiley]
卷期号:25 (6): 2939-2962 被引量:31
标识
DOI:10.1111/tgis.12795
摘要

Abstract Terrain classification involves essential tasks in geomorphology, landscape investigation, regional planning, and hazard prediction. Most existing methods are based on a simple thresholding approach. However, such an approach is limited in terms of accuracy and robustness, especially for large‐scale tasks. To overcome this limitation, this article proposes an object‐based framework combined with the random forest. Six terrain factors, namely terrain relief, surface roughness, elevation, elevation coefficient variation, shaded relief, and accumulative curvature, are first selected by correlation analysis using Sheffield's entropy. The obtained segmentation result is then optimized by Moran's I and the weighted variance, combining both terrain factors and textures derived from digital elevation models. Then, the features are selected among both terrain factors and their gray‐level co‐occurrence matrix textures. Finally, the features are fed into the random forest classifier. Seven landform types are classified, including plain, hill, low mountain, low‐middle mountain, high‐middle mountain, high mountain, and extremely high mountain. A case study in China was conducted and achieved an overall accuracy of 80.53% compared with the official landform atlas, which is better performance over the compared semi‐automatic methods. The transferability of our framework was further confirmed by an additional application in provincial‐scale mapping with a different classification system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
璐璐发布了新的文献求助10
1秒前
ljw完成签到,获得积分20
2秒前
3秒前
6秒前
科目三应助youjiwuji采纳,获得10
7秒前
7秒前
风笛完成签到 ,获得积分10
8秒前
FashionBoy应助右右采纳,获得10
8秒前
tomato发布了新的文献求助10
9秒前
10秒前
malistm发布了新的文献求助10
11秒前
小马甲应助吃馒头的包子采纳,获得10
11秒前
11秒前
14秒前
15秒前
15秒前
lplplp发布了新的文献求助10
16秒前
16秒前
haosu完成签到 ,获得积分10
18秒前
19秒前
就是不签名完成签到,获得积分10
21秒前
传奇3应助勤劳的小洛克采纳,获得10
21秒前
22秒前
23秒前
右右完成签到,获得积分10
23秒前
25秒前
右右发布了新的文献求助10
27秒前
烟花应助ciags采纳,获得10
28秒前
28秒前
毛豆应助问雁采纳,获得10
29秒前
29秒前
30秒前
sssss发布了新的文献求助20
30秒前
852应助stone采纳,获得10
30秒前
wwwwww发布了新的文献求助10
34秒前
34秒前
布鲁爱思发布了新的文献求助10
34秒前
34秒前
111发布了新的文献求助10
35秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416105
求助须知:如何正确求助?哪些是违规求助? 3017776
关于积分的说明 8882583
捐赠科研通 2705363
什么是DOI,文献DOI怎么找? 1483501
科研通“疑难数据库(出版商)”最低求助积分说明 685751
邀请新用户注册赠送积分活动 680795