Classification of Idiomatic Sentences Using AWD-LSTM

计算机科学 人工智能 判决 自然语言处理 语音识别
作者
J. Briskilal,C. N. Subalalitha
出处
期刊:Lecture notes in networks and systems 卷期号:: 113-124
标识
DOI:10.1007/978-981-16-2126-0_11
摘要

Idioms are a mixture of terms with a figurative meaning distinct from the literal meanings of each word or expression. Automatic meaning detection of idioms represents a serious challenge in understanding the language. Because their meaning cannot be directly retrieved from the words, the development of computational models for human processing human languages is concerned with natural language processing (NLP). Idiomatic phrase identification is utmost important in many NLP applications like machine translation system, chatbot and information retrieval system (IR). Text classification is one of the fundamental tasks of NLP and is mostly attempted using supervised algorithms. This paper has perceived the identification of idioms as a text classification task. In this paper, we propose a classification model to classify the idioms and the literal sentences using ASGD weight-dropped LSTM (AWD-LSTM) model and universal language model fine-tuning (ULMFiT) for transfer learning to fine-tune the language model. The proposed model has been evaluated using precision, recall and F1-score metrics. The proposed model has been tested with the TroFi metaphor dataset and an in-house dataset and achieved 81.4 and 85.9% of F-Score, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wsy发布了新的文献求助10
刚刚
慕青应助wx采纳,获得10
1秒前
1秒前
汉堡包应助wx采纳,获得10
1秒前
娇气的春天完成签到 ,获得积分10
1秒前
2秒前
zlh发布了新的文献求助10
2秒前
淡然向南完成签到,获得积分20
3秒前
果酱圆圆发布了新的文献求助10
4秒前
Bob_Y完成签到 ,获得积分10
4秒前
祝愿完成签到 ,获得积分10
4秒前
4秒前
小熊完成签到,获得积分10
5秒前
6秒前
Summer发布了新的文献求助10
6秒前
7秒前
Akim应助无聊的玉米采纳,获得10
8秒前
灯塔水母完成签到,获得积分20
8秒前
8秒前
小熊发布了新的文献求助10
8秒前
10秒前
果酱圆圆完成签到,获得积分20
11秒前
丘比特应助一三二五七采纳,获得50
11秒前
灯塔水母发布了新的文献求助10
11秒前
12秒前
阿伍完成签到,获得积分10
12秒前
yar应助wsy采纳,获得10
13秒前
陳新儒发布了新的文献求助10
14秒前
14秒前
15秒前
19秒前
Lucas应助谨慎的如风采纳,获得10
19秒前
20秒前
清凉茶完成签到,获得积分10
21秒前
22秒前
ccmimicc完成签到,获得积分10
22秒前
研友_VZG7GZ应助xixili采纳,获得10
22秒前
22秒前
23秒前
Hello应助lin采纳,获得30
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313969
求助须知:如何正确求助?哪些是违规求助? 2946329
关于积分的说明 8529696
捐赠科研通 2621983
什么是DOI,文献DOI怎么找? 1434250
科研通“疑难数据库(出版商)”最低求助积分说明 665190
邀请新用户注册赠送积分活动 650774