A systematic review on overfitting control in shallow and deep neural networks

过度拟合 计算机科学 人工智能 机器学习 深度学习 卷积神经网络 人工神经网络
作者
Mohammad Mahdi Bejani,Mehdi Ghatee
出处
期刊:Artificial Intelligence Review [Springer Science+Business Media]
卷期号:54 (8): 6391-6438 被引量:326
标识
DOI:10.1007/s10462-021-09975-1
摘要

Intelligent Transportation Systems (ITS) are much correlated with data science mechanisms. Among the different correlation branches, this paper focuses on the neural network learning models. Some of the considered models are shallow and they get some user-defined features and learn the relationship, while deep models extract the necessary features before learning by themselves. Both of these paradigms are utilized in the recent intelligent transportation systems (ITS) to support decision-making by the aid of different operations such as frequent patterns mining, regression, clustering, and classification. When these learners cannot generalize the results and just memorize the training samples, they fail to support the necessities. In these cases, the testing error is bigger than the training error. This phenomenon is addressed as overfitting in the literature. Because, this issue decreases the reliability of learning systems, in ITS applications, we cannot use such over-fitted machine learning models for different tasks such as traffic prediction, the signal controlling, safety applications, emergency responses, mode detection, driving evaluation, etc. Besides, deep learning models use a great number of hyper-parameters, the overfitting in deep models is more attention. To solve this problem, the regularized learning models can be followed. The aim of this paper is to review the approaches presented to regularize the overfitting in different categories of ITS studies. Then, we give a case study on driving safety that uses a regularized version of the convolutional neural network (CNN).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沫沫沫沫完成签到 ,获得积分10
1秒前
sseekker完成签到 ,获得积分10
2秒前
2秒前
dd完成签到 ,获得积分10
2秒前
Tek完成签到 ,获得积分10
3秒前
单纯的冬灵完成签到 ,获得积分10
3秒前
Ring完成签到 ,获得积分10
3秒前
manman11发布了新的文献求助10
4秒前
函数完成签到 ,获得积分10
4秒前
万能图书馆应助十一采纳,获得10
4秒前
4秒前
4秒前
一只菜鸟完成签到,获得积分10
4秒前
Mandy完成签到 ,获得积分10
5秒前
广阔天地完成签到 ,获得积分10
5秒前
拼搏小丸子完成签到 ,获得积分10
5秒前
5秒前
6秒前
发一篇Nature完成签到 ,获得积分10
6秒前
lwq完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
卡卡罗特完成签到,获得积分20
6秒前
狂奔弟弟完成签到 ,获得积分10
6秒前
万能图书馆应助乐正成危采纳,获得10
6秒前
7秒前
xuxu完成签到,获得积分10
7秒前
SPARKLING完成签到 ,获得积分10
7秒前
dadada完成签到 ,获得积分10
7秒前
坚定凝旋完成签到 ,获得积分10
7秒前
请叫我表情帝完成签到 ,获得积分10
8秒前
嘴嘴完成签到 ,获得积分10
8秒前
嗯呐完成签到 ,获得积分10
8秒前
等待白安完成签到 ,获得积分10
8秒前
笨笨问安完成签到 ,获得积分10
8秒前
明理夏波完成签到 ,获得积分10
9秒前
help完成签到 ,获得积分10
9秒前
听风暖完成签到 ,获得积分10
10秒前
Perrylin718发布了新的文献求助10
10秒前
10秒前
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662278
求助须知:如何正确求助?哪些是违规求助? 3223084
关于积分的说明 9750065
捐赠科研通 2932888
什么是DOI,文献DOI怎么找? 1605851
邀请新用户注册赠送积分活动 758174
科研通“疑难数据库(出版商)”最低求助积分说明 734727