Association between socioeconomic welfare and depression among older adults: Evidence from the China health and Retirement Longitudinal Study

社会经济地位 福利 萧条(经济学) 人口学 纵向研究 医学 老年学 环境卫生 心理学 人口 经济 社会学 市场经济 宏观经济学 病理
作者
Wei Li,Echu Liu,Tomas Baležentis,Huanhuan Jin,Dalia Štreimikienė
出处
期刊:Social Science & Medicine [Elsevier BV]
卷期号:275: 113814-113814 被引量:32
标识
DOI:10.1016/j.socscimed.2021.113814
摘要

This study aims to examine the association between province-level socioeconomic welfare factors and depression symptoms among older adults in China. Province-level socioeconomic characteristics were merged with microdata for respondents over 65 years from the 2018 China Health and Retirement Longitudinal Study (CHARLS) Wave 4 (N = 6657). Principal component analysis (PCA) was used to extract three socioeconomic welfare factors constructed from 14 province-level variables. A Bayesian mixed-effects logistic model was applied to measure the association between the three socioeconomic welfare factors and depression symptoms while controlling for socio-demographic variables. The PCA showed that economic welfare, medical resource welfare, and social service welfare together explained 72.2 percent of the total variance of the 14 province-level variables. It was found that increasing economic welfare was significantly associated with a lower probability of depression symptoms (OR = 0.806, 95%CI: [0.674, 0.967]), while medical facilities were associated with a higher probability of depression symptoms (OR = 1.181, 95%CI: [1.029, 1.354]) among Chinese older adults. Uncertainty existed as to whether having access to social welfare (OR = 0.941, 95%CI: [0.835, 1.060]) was associated with prevalence of depression. Thus, improved socioeconomic welfare systems for older adults (which possibly require an increase in spending) are necessary to contribute further to reduced depression risk in China. Policymakers should also improve the utilization of medical resources to mitigate the incidence of depression among the elderly in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
EBA发布了新的文献求助10
刚刚
1秒前
qq完成签到,获得积分10
1秒前
2秒前
3秒前
2021完成签到,获得积分10
3秒前
柳七完成签到,获得积分10
4秒前
Ricky发布了新的文献求助10
5秒前
zzz发布了新的文献求助10
5秒前
5秒前
张三完成签到,获得积分10
5秒前
5秒前
Parotodus发布了新的文献求助30
5秒前
小点点cy_发布了新的文献求助10
6秒前
小蘑菇应助慕南枝采纳,获得10
6秒前
7秒前
8秒前
石榴发布了新的文献求助10
8秒前
Rachel发布了新的文献求助10
8秒前
板栗子完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
顺心的卿完成签到,获得积分20
10秒前
打打应助复杂的新柔采纳,获得10
10秒前
11秒前
曾经书本发布了新的文献求助10
11秒前
Orange应助文文采纳,获得10
11秒前
11秒前
zzz完成签到,获得积分20
11秒前
12秒前
科研通AI5应助SCI采纳,获得10
12秒前
CodeCraft应助兴奋芷采纳,获得10
14秒前
14秒前
mauve完成签到 ,获得积分10
14秒前
板栗子发布了新的文献求助10
14秒前
jor666完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3757090
求助须知:如何正确求助?哪些是违规求助? 3300403
关于积分的说明 10113496
捐赠科研通 3014854
什么是DOI,文献DOI怎么找? 1655754
邀请新用户注册赠送积分活动 790073
科研通“疑难数据库(出版商)”最低求助积分说明 753565