亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiomics model of dual-time 2-[18F]FDG PET/CT imaging to distinguish between pancreatic ductal adenocarcinoma and autoimmune pancreatitis

自身免疫性胰腺炎 无线电技术 医学 胰腺导管腺癌 神经组阅片室 放射科 胰腺癌 支持向量机 特征(语言学) 医学影像学 人工智能 核医学 胰腺炎 计算机科学 癌症 内科学 语言学 精神科 哲学 神经学
作者
Zhaobang Liu,Ming Li,Changjing Zuo,Zehong Yang,Xiaokai Yang,Shengnan Ren,Peng Ye,Gaofeng Sun,Jun Shen,Chao Cheng,Xiaodong Yang
出处
期刊:European Radiology [Springer Nature]
卷期号:31 (9): 6983-6991 被引量:33
标识
DOI:10.1007/s00330-021-07778-0
摘要

Pancreatic ductal adenocarcinoma (PDAC) and autoimmune pancreatitis (AIP) are diseases with a highly analogous visual presentation that are difficult to distinguish by imaging. The purpose of this research was to create a radiomics-based prediction model using dual-time PET/CT imaging for the noninvasive classification of PDAC and AIP lesions. This retrospective study was performed on 112 patients (48 patients with AIP and 64 patients with PDAC). All cases were confirmed by imaging and clinical follow-up, and/or pathology. A total of 502 radiomics features were extracted from the dual-time PET/CT images to develop a radiomics decision model. An additional 12 maximum intensity projection (MIP) features were also calculated to further improve the radiomics model. The optimal radiomics feature set was selected by support vector machine recursive feature elimination (SVM-RFE), and the final classifier was built using a linear SVM. The performance of the proposed dual-time model was evaluated using nested cross-validation for accuracy, sensitivity, specificity, and area under the curve (AUC). The final prediction model was developed from a combination of the SVM-RFE and linear SVM with the required quantitative features. The multimodal and multidimensional features performed well for classification (average AUC: 0.9668, accuracy: 89.91%, sensitivity: 85.31%, specificity: 96.04%). The radiomics model based on 2-[18F]fluoro-2-deoxy-D-glucose (2-[18F]FDG) PET/CT dual-time images provided promising performance for discriminating between patients with benign AIP and malignant PDAC lesions, which shows its potential for use as a diagnostic tool for clinical decision-making. • The clinical symptoms and imaging visual presentations of PDAC and AIP are highly similar, and accurate differentiation of PDAC and AIP lesions is difficult. • Radiomics features provided a potential noninvasive method for differentiation of AIP from PDAC. • The diagnostic performance of the proposed radiomics model indicates its potential to assist doctors in making treatment decisions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
Party完成签到,获得积分10
21秒前
Fairy完成签到,获得积分10
23秒前
26秒前
我哪知道怎么完成签到 ,获得积分10
34秒前
39秒前
江夏完成签到 ,获得积分10
41秒前
42秒前
wangfaqing942完成签到 ,获得积分10
48秒前
1分钟前
Fan完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Ahan发布了新的文献求助10
1分钟前
1分钟前
2分钟前
jkair发布了新的文献求助10
2分钟前
jkair完成签到,获得积分10
2分钟前
mrjohn完成签到,获得积分0
2分钟前
李小强完成签到,获得积分10
2分钟前
和谐小鸭子完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
gszy1975完成签到,获得积分10
3分钟前
半晴发布了新的文献求助30
3分钟前
天天快乐应助半晴采纳,获得10
3分钟前
半晴完成签到,获得积分20
4分钟前
4分钟前
4分钟前
YUHANGJI发布了新的文献求助50
4分钟前
4分钟前
动听的涵山完成签到,获得积分10
4分钟前
sxb10101应助知更鸟采纳,获得10
4分钟前
5分钟前
5分钟前
5分钟前
tubby发布了新的文献求助10
5分钟前
隐形曼青应助研友_LNBgkL采纳,获得10
5分钟前
5分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644786
求助须知:如何正确求助?哪些是违规求助? 4765654
关于积分的说明 15025637
捐赠科研通 4803114
什么是DOI,文献DOI怎么找? 2568008
邀请新用户注册赠送积分活动 1525509
关于科研通互助平台的介绍 1485018