Radiomics model of dual-time 2-[18F]FDG PET/CT imaging to distinguish between pancreatic ductal adenocarcinoma and autoimmune pancreatitis

自身免疫性胰腺炎 无线电技术 医学 胰腺导管腺癌 神经组阅片室 放射科 胰腺癌 支持向量机 特征(语言学) 医学影像学 人工智能 核医学 胰腺炎 计算机科学 癌症 内科学 语言学 精神科 哲学 神经学
作者
Zhaobang Liu,Ming Li,Changjing Zuo,Zehong Yang,Xiaokai Yang,Shengnan Ren,Peng Ye,Gaofeng Sun,Jun Shen,Chao Cheng,Xiaodong Yang
出处
期刊:European Radiology [Springer Nature]
卷期号:31 (9): 6983-6991 被引量:33
标识
DOI:10.1007/s00330-021-07778-0
摘要

Pancreatic ductal adenocarcinoma (PDAC) and autoimmune pancreatitis (AIP) are diseases with a highly analogous visual presentation that are difficult to distinguish by imaging. The purpose of this research was to create a radiomics-based prediction model using dual-time PET/CT imaging for the noninvasive classification of PDAC and AIP lesions. This retrospective study was performed on 112 patients (48 patients with AIP and 64 patients with PDAC). All cases were confirmed by imaging and clinical follow-up, and/or pathology. A total of 502 radiomics features were extracted from the dual-time PET/CT images to develop a radiomics decision model. An additional 12 maximum intensity projection (MIP) features were also calculated to further improve the radiomics model. The optimal radiomics feature set was selected by support vector machine recursive feature elimination (SVM-RFE), and the final classifier was built using a linear SVM. The performance of the proposed dual-time model was evaluated using nested cross-validation for accuracy, sensitivity, specificity, and area under the curve (AUC). The final prediction model was developed from a combination of the SVM-RFE and linear SVM with the required quantitative features. The multimodal and multidimensional features performed well for classification (average AUC: 0.9668, accuracy: 89.91%, sensitivity: 85.31%, specificity: 96.04%). The radiomics model based on 2-[18F]fluoro-2-deoxy-D-glucose (2-[18F]FDG) PET/CT dual-time images provided promising performance for discriminating between patients with benign AIP and malignant PDAC lesions, which shows its potential for use as a diagnostic tool for clinical decision-making. • The clinical symptoms and imaging visual presentations of PDAC and AIP are highly similar, and accurate differentiation of PDAC and AIP lesions is difficult. • Radiomics features provided a potential noninvasive method for differentiation of AIP from PDAC. • The diagnostic performance of the proposed radiomics model indicates its potential to assist doctors in making treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Frank应助碧蓝的含羞草采纳,获得10
刚刚
1秒前
魔幻灯泡完成签到,获得积分10
1秒前
小陈完成签到,获得积分10
2秒前
科研通AI6应助谢生婷采纳,获得10
2秒前
2秒前
3秒前
九月完成签到 ,获得积分10
3秒前
3秒前
汤圆完成签到,获得积分10
4秒前
多看文献完成签到,获得积分10
4秒前
科研通AI6应助北北北采纳,获得10
4秒前
念安完成签到 ,获得积分10
4秒前
李爱国应助英勇羿采纳,获得10
4秒前
5秒前
duo完成签到,获得积分10
5秒前
不明发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
冷艳水壶完成签到 ,获得积分10
8秒前
JuntaoWang发布了新的文献求助20
8秒前
小胖胖完成签到,获得积分10
8秒前
wxyshare举报阿哲求助涉嫌违规
9秒前
9秒前
10秒前
李健应助缥缈的机器猫采纳,获得10
10秒前
ding应助努力的学采纳,获得10
10秒前
科目三应助dingmeijia采纳,获得10
10秒前
bodao发布了新的文献求助10
11秒前
yyjw完成签到,获得积分10
11秒前
11秒前
所所应助隐形小熊猫采纳,获得10
13秒前
mimiya完成签到,获得积分20
13秒前
purple发布了新的文献求助10
14秒前
lalala完成签到,获得积分10
14秒前
可爱的函函应助凛冬采纳,获得10
14秒前
LUCK发布了新的文献求助10
14秒前
烟花应助科研通管家采纳,获得10
15秒前
打打应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461138
求助须知:如何正确求助?哪些是违规求助? 4566175
关于积分的说明 14303831
捐赠科研通 4491884
什么是DOI,文献DOI怎么找? 2460490
邀请新用户注册赠送积分活动 1449811
关于科研通互助平台的介绍 1425582