已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Radiomics model of dual-time 2-[18F]FDG PET/CT imaging to distinguish between pancreatic ductal adenocarcinoma and autoimmune pancreatitis

自身免疫性胰腺炎 无线电技术 医学 胰腺导管腺癌 神经组阅片室 放射科 胰腺癌 支持向量机 特征(语言学) 医学影像学 人工智能 核医学 胰腺炎 计算机科学 癌症 内科学 语言学 精神科 哲学 神经学
作者
Zhaobang Liu,Ming Li,Changjing Zuo,Zehong Yang,Xiaokai Yang,Shengnan Ren,Peng Ye,Gaofeng Sun,Jun Shen,Chao Cheng,Xiaodong Yang
出处
期刊:European Radiology [Springer Nature]
卷期号:31 (9): 6983-6991 被引量:33
标识
DOI:10.1007/s00330-021-07778-0
摘要

Pancreatic ductal adenocarcinoma (PDAC) and autoimmune pancreatitis (AIP) are diseases with a highly analogous visual presentation that are difficult to distinguish by imaging. The purpose of this research was to create a radiomics-based prediction model using dual-time PET/CT imaging for the noninvasive classification of PDAC and AIP lesions. This retrospective study was performed on 112 patients (48 patients with AIP and 64 patients with PDAC). All cases were confirmed by imaging and clinical follow-up, and/or pathology. A total of 502 radiomics features were extracted from the dual-time PET/CT images to develop a radiomics decision model. An additional 12 maximum intensity projection (MIP) features were also calculated to further improve the radiomics model. The optimal radiomics feature set was selected by support vector machine recursive feature elimination (SVM-RFE), and the final classifier was built using a linear SVM. The performance of the proposed dual-time model was evaluated using nested cross-validation for accuracy, sensitivity, specificity, and area under the curve (AUC). The final prediction model was developed from a combination of the SVM-RFE and linear SVM with the required quantitative features. The multimodal and multidimensional features performed well for classification (average AUC: 0.9668, accuracy: 89.91%, sensitivity: 85.31%, specificity: 96.04%). The radiomics model based on 2-[18F]fluoro-2-deoxy-D-glucose (2-[18F]FDG) PET/CT dual-time images provided promising performance for discriminating between patients with benign AIP and malignant PDAC lesions, which shows its potential for use as a diagnostic tool for clinical decision-making. • The clinical symptoms and imaging visual presentations of PDAC and AIP are highly similar, and accurate differentiation of PDAC and AIP lesions is difficult. • Radiomics features provided a potential noninvasive method for differentiation of AIP from PDAC. • The diagnostic performance of the proposed radiomics model indicates its potential to assist doctors in making treatment decisions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
努力的安子完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
寒寒寒寒发布了新的文献求助10
6秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
kkk发布了新的文献求助10
8秒前
小飞发布了新的文献求助10
10秒前
孙文杰完成签到 ,获得积分10
11秒前
捌柒陆发布了新的文献求助10
11秒前
13秒前
科研通AI6应助小小鱼采纳,获得10
15秒前
childe发布了新的文献求助20
15秒前
完美世界应助捌柒陆采纳,获得10
17秒前
18秒前
能干的幼菱完成签到,获得积分10
20秒前
英姑应助KwokFung采纳,获得20
21秒前
23秒前
英姑应助gmugyy采纳,获得10
26秒前
27秒前
科研通AI6应助小小鱼采纳,获得10
28秒前
guo完成签到 ,获得积分10
28秒前
纪贝贝完成签到,获得积分10
31秒前
Zone完成签到 ,获得积分10
32秒前
balabala发布了新的文献求助10
32秒前
芳华如梦完成签到,获得积分10
34秒前
44秒前
47秒前
砍柴少年发布了新的文献求助10
49秒前
KwokFung发布了新的文献求助20
49秒前
51秒前
一只呆呆完成签到 ,获得积分10
51秒前
万能图书馆应助Zz采纳,获得10
53秒前
于凡完成签到,获得积分10
54秒前
充电宝应助Adrenaline采纳,获得20
56秒前
罗丝钉完成签到,获得积分10
57秒前
思源应助无情的宛儿采纳,获得10
57秒前
Dali应助首负采纳,获得10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573086
求助须知:如何正确求助?哪些是违规求助? 4659159
关于积分的说明 14723983
捐赠科研通 4599050
什么是DOI,文献DOI怎么找? 2524086
邀请新用户注册赠送积分活动 1494642
关于科研通互助平台的介绍 1464679