Radiomics model of dual-time 2-[18F]FDG PET/CT imaging to distinguish between pancreatic ductal adenocarcinoma and autoimmune pancreatitis

自身免疫性胰腺炎 无线电技术 医学 胰腺导管腺癌 神经组阅片室 放射科 胰腺癌 支持向量机 特征(语言学) 医学影像学 人工智能 核医学 胰腺炎 计算机科学 癌症 内科学 语言学 精神科 哲学 神经学
作者
Zhaobang Liu,Ming Li,Changjing Zuo,Zehong Yang,Xiaokai Yang,Shengnan Ren,Peng Ye,Gaofeng Sun,Jun Shen,Chao Cheng,Xiaodong Yang
出处
期刊:European Radiology [Springer Nature]
卷期号:31 (9): 6983-6991 被引量:33
标识
DOI:10.1007/s00330-021-07778-0
摘要

Pancreatic ductal adenocarcinoma (PDAC) and autoimmune pancreatitis (AIP) are diseases with a highly analogous visual presentation that are difficult to distinguish by imaging. The purpose of this research was to create a radiomics-based prediction model using dual-time PET/CT imaging for the noninvasive classification of PDAC and AIP lesions. This retrospective study was performed on 112 patients (48 patients with AIP and 64 patients with PDAC). All cases were confirmed by imaging and clinical follow-up, and/or pathology. A total of 502 radiomics features were extracted from the dual-time PET/CT images to develop a radiomics decision model. An additional 12 maximum intensity projection (MIP) features were also calculated to further improve the radiomics model. The optimal radiomics feature set was selected by support vector machine recursive feature elimination (SVM-RFE), and the final classifier was built using a linear SVM. The performance of the proposed dual-time model was evaluated using nested cross-validation for accuracy, sensitivity, specificity, and area under the curve (AUC). The final prediction model was developed from a combination of the SVM-RFE and linear SVM with the required quantitative features. The multimodal and multidimensional features performed well for classification (average AUC: 0.9668, accuracy: 89.91%, sensitivity: 85.31%, specificity: 96.04%). The radiomics model based on 2-[18F]fluoro-2-deoxy-D-glucose (2-[18F]FDG) PET/CT dual-time images provided promising performance for discriminating between patients with benign AIP and malignant PDAC lesions, which shows its potential for use as a diagnostic tool for clinical decision-making. • The clinical symptoms and imaging visual presentations of PDAC and AIP are highly similar, and accurate differentiation of PDAC and AIP lesions is difficult. • Radiomics features provided a potential noninvasive method for differentiation of AIP from PDAC. • The diagnostic performance of the proposed radiomics model indicates its potential to assist doctors in making treatment decisions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
亚迪完成签到,获得积分10
刚刚
帅666完成签到,获得积分10
刚刚
直率苡发布了新的文献求助10
刚刚
顺利灵枫发布了新的文献求助10
刚刚
1秒前
lyn完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
ltt发布了新的文献求助10
2秒前
小蘑菇应助Rixxed采纳,获得200
2秒前
2秒前
2秒前
核桃发布了新的文献求助30
2秒前
Witness完成签到,获得积分10
2秒前
隔壁的小民完成签到,获得积分10
3秒前
天空完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
Tan发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
Witness发布了新的文献求助10
5秒前
Ting完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
小蘑菇应助Islet采纳,获得10
7秒前
mjje发布了新的文献求助10
7秒前
miksimet2005发布了新的文献求助10
8秒前
Owen应助Rixxed采纳,获得10
8秒前
小菜狗发布了新的文献求助10
8秒前
岳岳岳发布了新的文献求助10
8秒前
小王时完成签到,获得积分10
8秒前
科研通AI2S应助平淡凝竹采纳,获得10
9秒前
terry发布了新的文献求助10
9秒前
Littboshi发布了新的文献求助50
10秒前
糟糕的颜完成签到 ,获得积分10
11秒前
项人发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784591
求助须知:如何正确求助?哪些是违规求助? 5683318
关于积分的说明 15464856
捐赠科研通 4913776
什么是DOI,文献DOI怎么找? 2644858
邀请新用户注册赠送积分活动 1592804
关于科研通互助平台的介绍 1547207