亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiomics model of dual-time 2-[18F]FDG PET/CT imaging to distinguish between pancreatic ductal adenocarcinoma and autoimmune pancreatitis

自身免疫性胰腺炎 无线电技术 医学 胰腺导管腺癌 神经组阅片室 放射科 胰腺癌 支持向量机 特征(语言学) 医学影像学 人工智能 核医学 胰腺炎 计算机科学 癌症 内科学 语言学 精神科 哲学 神经学
作者
Zhaobang Liu,Ming Li,Changjing Zuo,Zehong Yang,Xiaokai Yang,Shengnan Ren,Peng Ye,Gaofeng Sun,Jun Shen,Chao Cheng,Xiaodong Yang
出处
期刊:European Radiology [Springer Nature]
卷期号:31 (9): 6983-6991 被引量:33
标识
DOI:10.1007/s00330-021-07778-0
摘要

Pancreatic ductal adenocarcinoma (PDAC) and autoimmune pancreatitis (AIP) are diseases with a highly analogous visual presentation that are difficult to distinguish by imaging. The purpose of this research was to create a radiomics-based prediction model using dual-time PET/CT imaging for the noninvasive classification of PDAC and AIP lesions. This retrospective study was performed on 112 patients (48 patients with AIP and 64 patients with PDAC). All cases were confirmed by imaging and clinical follow-up, and/or pathology. A total of 502 radiomics features were extracted from the dual-time PET/CT images to develop a radiomics decision model. An additional 12 maximum intensity projection (MIP) features were also calculated to further improve the radiomics model. The optimal radiomics feature set was selected by support vector machine recursive feature elimination (SVM-RFE), and the final classifier was built using a linear SVM. The performance of the proposed dual-time model was evaluated using nested cross-validation for accuracy, sensitivity, specificity, and area under the curve (AUC). The final prediction model was developed from a combination of the SVM-RFE and linear SVM with the required quantitative features. The multimodal and multidimensional features performed well for classification (average AUC: 0.9668, accuracy: 89.91%, sensitivity: 85.31%, specificity: 96.04%). The radiomics model based on 2-[18F]fluoro-2-deoxy-D-glucose (2-[18F]FDG) PET/CT dual-time images provided promising performance for discriminating between patients with benign AIP and malignant PDAC lesions, which shows its potential for use as a diagnostic tool for clinical decision-making. • The clinical symptoms and imaging visual presentations of PDAC and AIP are highly similar, and accurate differentiation of PDAC and AIP lesions is difficult. • Radiomics features provided a potential noninvasive method for differentiation of AIP from PDAC. • The diagnostic performance of the proposed radiomics model indicates its potential to assist doctors in making treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助123456采纳,获得10
6秒前
shaylie完成签到 ,获得积分10
7秒前
13秒前
123456发布了新的文献求助10
17秒前
guan发布了新的文献求助30
18秒前
周旭发布了新的文献求助10
27秒前
ma关闭了ma文献求助
31秒前
HuiHui完成签到,获得积分10
33秒前
37秒前
丘比特应助科研通管家采纳,获得10
37秒前
科研通AI6应助科研通管家采纳,获得10
37秒前
浮游应助科研通管家采纳,获得10
37秒前
搜集达人应助不是狸猫采纳,获得10
37秒前
星辰大海应助叙温雨采纳,获得10
37秒前
在水一方应助123456采纳,获得10
39秒前
唐荣完成签到,获得积分10
40秒前
脑洞疼应助周旭采纳,获得10
44秒前
48秒前
123456发布了新的文献求助10
51秒前
1分钟前
1分钟前
只想发财完成签到 ,获得积分10
1分钟前
asdf完成签到,获得积分10
1分钟前
如雨坠完成签到 ,获得积分10
1分钟前
叙温雨发布了新的文献求助10
1分钟前
隐形曼青应助123456采纳,获得10
1分钟前
缓慢的烨伟完成签到,获得积分10
1分钟前
dagangwood完成签到 ,获得积分10
1分钟前
TX完成签到,获得积分10
1分钟前
TX发布了新的文献求助100
1分钟前
1分钟前
123456完成签到,获得积分10
1分钟前
孟雯毓完成签到,获得积分10
1分钟前
1分钟前
123456发布了新的文献求助10
1分钟前
小鸟芋圆露露完成签到 ,获得积分10
1分钟前
不是狸猫发布了新的文献求助10
2分钟前
单薄绿竹完成签到,获得积分10
2分钟前
徐志豪完成签到,获得积分20
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5291429
求助须知:如何正确求助?哪些是违规求助? 4442437
关于积分的说明 13829910
捐赠科研通 4325471
什么是DOI,文献DOI怎么找? 2374277
邀请新用户注册赠送积分活动 1369588
关于科研通互助平台的介绍 1333781