Radiomics model of dual-time 2-[18F]FDG PET/CT imaging to distinguish between pancreatic ductal adenocarcinoma and autoimmune pancreatitis

自身免疫性胰腺炎 无线电技术 医学 胰腺导管腺癌 神经组阅片室 放射科 胰腺癌 支持向量机 特征(语言学) 医学影像学 人工智能 核医学 胰腺炎 计算机科学 癌症 内科学 神经学 精神科 语言学 哲学
作者
Zhaobang Liu,Ming Li,Changjing Zuo,Zehong Yang,Xiaokai Yang,Shengnan Ren,Peng Ye,Gaofeng Sun,Jun Shen,Chao Cheng,Xiaodong Yang
出处
期刊:European Radiology [Springer Nature]
卷期号:31 (9): 6983-6991 被引量:33
标识
DOI:10.1007/s00330-021-07778-0
摘要

Pancreatic ductal adenocarcinoma (PDAC) and autoimmune pancreatitis (AIP) are diseases with a highly analogous visual presentation that are difficult to distinguish by imaging. The purpose of this research was to create a radiomics-based prediction model using dual-time PET/CT imaging for the noninvasive classification of PDAC and AIP lesions. This retrospective study was performed on 112 patients (48 patients with AIP and 64 patients with PDAC). All cases were confirmed by imaging and clinical follow-up, and/or pathology. A total of 502 radiomics features were extracted from the dual-time PET/CT images to develop a radiomics decision model. An additional 12 maximum intensity projection (MIP) features were also calculated to further improve the radiomics model. The optimal radiomics feature set was selected by support vector machine recursive feature elimination (SVM-RFE), and the final classifier was built using a linear SVM. The performance of the proposed dual-time model was evaluated using nested cross-validation for accuracy, sensitivity, specificity, and area under the curve (AUC). The final prediction model was developed from a combination of the SVM-RFE and linear SVM with the required quantitative features. The multimodal and multidimensional features performed well for classification (average AUC: 0.9668, accuracy: 89.91%, sensitivity: 85.31%, specificity: 96.04%). The radiomics model based on 2-[18F]fluoro-2-deoxy-D-glucose (2-[18F]FDG) PET/CT dual-time images provided promising performance for discriminating between patients with benign AIP and malignant PDAC lesions, which shows its potential for use as a diagnostic tool for clinical decision-making. • The clinical symptoms and imaging visual presentations of PDAC and AIP are highly similar, and accurate differentiation of PDAC and AIP lesions is difficult. • Radiomics features provided a potential noninvasive method for differentiation of AIP from PDAC. • The diagnostic performance of the proposed radiomics model indicates its potential to assist doctors in making treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
6秒前
脑洞疼应助阳阳采纳,获得10
9秒前
专注秋尽发布了新的文献求助10
10秒前
12秒前
默默的棒棒糖完成签到 ,获得积分10
14秒前
14秒前
SONG关注了科研通微信公众号
14秒前
15秒前
ding应助呆头采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
sutharsons应助科研通管家采纳,获得30
15秒前
axin应助科研通管家采纳,获得10
15秒前
terence应助科研通管家采纳,获得30
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
sutharsons应助科研通管家采纳,获得30
15秒前
852应助科研通管家采纳,获得10
15秒前
hh应助科研通管家采纳,获得10
15秒前
sun发布了新的文献求助10
16秒前
16秒前
zhu完成签到,获得积分10
16秒前
酷波er应助缚大哥采纳,获得10
17秒前
李健应助明理雨筠采纳,获得10
17秒前
wang发布了新的文献求助10
19秒前
木头人给step_stone的求助进行了留言
19秒前
魏伯安完成签到,获得积分10
20秒前
朴素尔岚发布了新的文献求助10
21秒前
科研通AI5应助nextconnie采纳,获得10
21秒前
务实的犀牛完成签到,获得积分10
22秒前
22秒前
Blue_Pig发布了新的文献求助10
22秒前
23秒前
科研通AI2S应助橙子fy16_采纳,获得10
24秒前
LGJ完成签到,获得积分10
24秒前
wang完成签到,获得积分10
26秒前
27秒前
28秒前
脑洞疼应助Blue_Pig采纳,获得10
30秒前
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849