Resource allocation and scheduling in the intelligent edge computing context

计算机科学 聚类分析 互联网 调度(生产过程) 用户空间 GSM演进的增强数据速率 数据挖掘 人工智能 万维网 计算机网络 运营管理 经济
作者
Jun Liu,Tianfu Yang,Jingpan Bai,Bo Sun
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:121: 48-53 被引量:12
标识
DOI:10.1016/j.future.2021.02.018
摘要

With the rapid development of the edge computing, Internet economy has become a new situation in economic development. What has brought development to the Internet economy is a variety of family-based platforms (i.e., edge computing). However, in the face of huge Internet users and different users’ shopping habits, reasonably personalized e-commerce platform allocations for users can improve the user’s website shopping experience. However, due to the huge user data and the diversity of SDN (software defined network) platforms, it is a huge challenge to reasonably allocate e-commerce resources/platforms to users. The quality of the SDN personalized resource allocations also affects the purchase conversion rate. Clustering algorithm is an algorithm involved in grouping data in machine learning. The same set of data has the same attributes and characteristics, and the attributes or features between different sets of data will be relatively large. In this paper, by using the mean shift clustering algorithm to characterize the behavior data. According to the characteristics of the grouping, we can allocate the e-commerce platform commonly used between the groups. However, using mean shift clustering for personalized allocation faces the problem of too high user data dimensions. Therefore, we first conduct computational efficiency analysis toward each user. We define user behavior sequences for user behavior data and classify user behavior. We transform the grouped user behavior into an embedded vector, and linearly transform the embedded vectors of different lengths into the same semantic space. We process the vectors in the semantic space through the self-attention layer and perform mean shift clustering. Experiments show that, in the edge computing context, our method can reduce the complexity of resource allocation toward complex data and improve the quality of the allocated data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李小二完成签到,获得积分10
刚刚
myyy完成签到 ,获得积分10
2秒前
5秒前
石头关注了科研通微信公众号
6秒前
高兴寒安完成签到,获得积分20
7秒前
7秒前
肖浩翔发布了新的文献求助30
9秒前
Owen应助Aug采纳,获得10
9秒前
9秒前
rainove完成签到,获得积分10
10秒前
SciGPT应助Bleser采纳,获得10
11秒前
12秒前
Mado完成签到,获得积分10
12秒前
12秒前
桐桐应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
维奈克拉应助科研通管家采纳,获得20
13秒前
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
侯总应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
酷炫的凤妖完成签到 ,获得积分10
14秒前
14秒前
隐形曼青应助科研通管家采纳,获得30
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
我是老大应助科研通管家采纳,获得10
14秒前
元谷雪应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
BowieHuang应助科研通管家采纳,获得10
14秒前
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
成就凡双应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589907
求助须知:如何正确求助?哪些是违规求助? 4674376
关于积分的说明 14793616
捐赠科研通 4629217
什么是DOI,文献DOI怎么找? 2532436
邀请新用户注册赠送积分活动 1501101
关于科研通互助平台的介绍 1468527