Resource allocation and scheduling in the intelligent edge computing context

计算机科学 聚类分析 互联网 调度(生产过程) 用户空间 GSM演进的增强数据速率 数据挖掘 人工智能 万维网 计算机网络 运营管理 经济
作者
Jun Liu,Tianfu Yang,Jingpan Bai,Bo Sun
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:121: 48-53 被引量:12
标识
DOI:10.1016/j.future.2021.02.018
摘要

With the rapid development of the edge computing, Internet economy has become a new situation in economic development. What has brought development to the Internet economy is a variety of family-based platforms (i.e., edge computing). However, in the face of huge Internet users and different users’ shopping habits, reasonably personalized e-commerce platform allocations for users can improve the user’s website shopping experience. However, due to the huge user data and the diversity of SDN (software defined network) platforms, it is a huge challenge to reasonably allocate e-commerce resources/platforms to users. The quality of the SDN personalized resource allocations also affects the purchase conversion rate. Clustering algorithm is an algorithm involved in grouping data in machine learning. The same set of data has the same attributes and characteristics, and the attributes or features between different sets of data will be relatively large. In this paper, by using the mean shift clustering algorithm to characterize the behavior data. According to the characteristics of the grouping, we can allocate the e-commerce platform commonly used between the groups. However, using mean shift clustering for personalized allocation faces the problem of too high user data dimensions. Therefore, we first conduct computational efficiency analysis toward each user. We define user behavior sequences for user behavior data and classify user behavior. We transform the grouped user behavior into an embedded vector, and linearly transform the embedded vectors of different lengths into the same semantic space. We process the vectors in the semantic space through the self-attention layer and perform mean shift clustering. Experiments show that, in the edge computing context, our method can reduce the complexity of resource allocation toward complex data and improve the quality of the allocated data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
事在人为发布了新的文献求助10
刚刚
坚强的咖啡豆完成签到,获得积分10
刚刚
刚刚
Profeto应助HM采纳,获得10
刚刚
Sonny发布了新的文献求助10
刚刚
Dreamy完成签到,获得积分10
刚刚
Yfvonne完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
3秒前
yxy发布了新的文献求助10
3秒前
益生菌发布了新的文献求助10
3秒前
踏实的酸奶完成签到,获得积分10
3秒前
Coldpal完成签到,获得积分10
3秒前
虎啊虎啊发布了新的文献求助10
3秒前
ljl完成签到,获得积分10
3秒前
lalala完成签到,获得积分20
3秒前
ybb完成签到,获得积分10
3秒前
球球了完成签到,获得积分10
4秒前
青易发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
小海发布了新的文献求助10
5秒前
joysa完成签到,获得积分10
6秒前
Jasper应助余生采纳,获得10
6秒前
yiyi完成签到,获得积分10
6秒前
Georges-09完成签到,获得积分10
6秒前
爱因斯宣发布了新的文献求助10
6秒前
谦让的莆完成签到 ,获得积分10
7秒前
7秒前
苏silence发布了新的文献求助10
8秒前
8秒前
科研小土豆完成签到,获得积分10
10秒前
小金鱼儿完成签到,获得积分10
10秒前
Danielle完成签到,获得积分10
10秒前
Paddi完成签到,获得积分10
11秒前
11秒前
Sxq完成签到,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986586
求助须知:如何正确求助?哪些是违规求助? 3529069
关于积分的说明 11242999
捐赠科研通 3267514
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881175
科研通“疑难数据库(出版商)”最低求助积分说明 808582