3D Multi-Attention Guided Multi-Task Learning Network for Automatic Gastric Tumor Segmentation and Lymph Node Classification

判别式 计算机科学 分割 卷积神经网络 人工智能 特征(语言学) 图像分割 特征学习 多任务学习 深度学习 特征提取 模式识别(心理学) 机器学习 任务(项目管理) 管理 经济 哲学 语言学
作者
Yongtao Zhang,Haimei Li,Jie Du,Jing Qin,Tianfu Wang,Yue Chen,Bing Liu,Wenwen Gao,Guolin Ma,Baiying Lei
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (6): 1618-1631 被引量:98
标识
DOI:10.1109/tmi.2021.3062902
摘要

Automatic gastric tumor segmentation and lymph node (LN) classification not only can assist radiologists in reading images, but also provide image-guided clinical diagnosis and improve diagnosis accuracy. However, due to the inhomogeneous intensity distribution of gastric tumor and LN in CT scans, the ambiguous/missing boundaries, and highly variable shapes of gastric tumor, it is quite challenging to develop an automatic solution. To comprehensively address these challenges, we propose a novel 3D multi-attention guided multi-task learning network for simultaneous gastric tumor segmentation and LN classification, which makes full use of the complementary information extracted from different dimensions, scales, and tasks. Specifically, we tackle task correlation and heterogeneity with the convolutional neural network consisting of scale-aware attention-guided shared feature learning for refined and universal multi-scale features, and task-aware attention-guided feature learning for task-specific discriminative features. This shared feature learning is equipped with two types of scale-aware attention (visual attention and adaptive spatial attention) and two stage-wise deep supervision paths. The task-aware attention-guided feature learning comprises a segmentation-aware attention module and a classification-aware attention module. The proposed 3D multi-task learning network can balance all tasks by combining segmentation and classification loss functions with weight uncertainty. We evaluate our model on an in-house CT images dataset collected from three medical centers. Experimental results demonstrate that our method outperforms the state-of-the-art algorithms, and obtains promising performance for tumor segmentation and LN classification. Moreover, to explore the generalization for other segmentation tasks, we also extend the proposed network to liver tumor segmentation in CT images of the MICCAI 2017 Liver Tumor Segmentation Challenge. Our implementation is released at https://github.com/infinite-tao/MA-MTLN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
小唐完成签到 ,获得积分10
2秒前
李健应助失眠朋友采纳,获得10
3秒前
4秒前
5秒前
5秒前
洛洛发布了新的文献求助10
6秒前
李爱国应助稳重的仙人掌采纳,获得10
6秒前
dongyajingggggg完成签到,获得积分10
7秒前
琦琦完成签到,获得积分10
7秒前
算命的完成签到,获得积分10
9秒前
Akim应助椒盐鲨鱼皮采纳,获得10
9秒前
hengyu举报AA求助涉嫌违规
10秒前
细腻的宫二完成签到,获得积分10
11秒前
11秒前
芃123完成签到 ,获得积分10
12秒前
大个应助危机的硬币采纳,获得20
12秒前
13秒前
14秒前
元气蛋完成签到,获得积分10
15秒前
Chawee完成签到,获得积分10
16秒前
autism发布了新的文献求助10
17秒前
菠萝菠萝哒应助gao2689采纳,获得10
19秒前
Ruichen.Wang应助勤劳小蚂蚁采纳,获得10
20秒前
危机的硬币完成签到,获得积分10
21秒前
kk完成签到,获得积分10
21秒前
sgs完成签到,获得积分10
21秒前
超帅的薯片完成签到,获得积分10
22秒前
wanci应助合适的冰香采纳,获得10
22秒前
23秒前
科研通AI2S应助ywhys采纳,获得10
24秒前
小二郎应助autism采纳,获得10
24秒前
24秒前
不吃海苔应助呼呼叫采纳,获得10
25秒前
27秒前
wafo发布了新的文献求助10
28秒前
29秒前
30秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 930
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3383617
求助须知:如何正确求助?哪些是违规求助? 2997818
关于积分的说明 8776615
捐赠科研通 2683405
什么是DOI,文献DOI怎么找? 1469647
科研通“疑难数据库(出版商)”最低求助积分说明 679488
邀请新用户注册赠送积分活动 671756