Wood‐Inspired Binder Enabled Vertical 3D Printing of g‐C3N4/CNT Arrays for Highly Efficient Photoelectrochemical Hydrogen Evolution

材料科学 纳米材料 纳米技术 化学工程 多孔性 光催化 碳纳米管 分解水 复合材料 催化作用 生物化学 工程类 化学
作者
Bo Jiang,Hui Huang,Wenbin Gong,Xiaoqing Gu,Ting Liu,Junchang Zhang,Wei Qin,Hui Chen,Yongcan Jin,Zhiqiang Liang,Lin Jiang
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:31 (45) 被引量:48
标识
DOI:10.1002/adfm.202105045
摘要

Abstract 2D nanomaterials are very attractive for photoelectrochemical applications due to their ultra‐thin structure, excellent physicochemical properties of large surface‐area‐to‐volume ratios, and the resulting abundant active sites and high charge transport capacity. However, the application of commonly used 2D nanomaterials with disordered‐stacking is always limited by high photoelectrode tortuosity, few surface‐active sites, and low mass transfer efficiency. Herein, inspired by wood structures, a vertical 3D printing strategy is developed to rapidly build vertically aligned and hierarchically porous graphitic carbon nitride/carbon nanotube (g‐C 3 N 4 /CNT) arrays by using lignin as a binder for efficient photoelectrochemical hydrogen evolution. Arising from the directional electron transport and multiple light scattering in the out‐of‐plane aligned and porous architecture, the resulting g‐C 3 N 4 /CNT arrays display an outstanding hydrogen evolution performance, with the hydrogen yield up to 4.36 µmol (cm −2 h −1 ) at a bias of −0.5 V versus RHE, 12.7 and 41.6 times higher than traditional thick g‐C 3 N 4 /CNT and g‐C 3 N 4 films, respectively. Moreover, this 3D printed structure can overcome the agglomeration problem of the commonly used g‐C 3 N 4 with powder configuration and shows desirable recyclability and stability. This facile and scalable vertical 3D printing strategy will open a new avenue to highly enhance the photoelectrochemical performance of 2D nanomaterials for sustainably production of clean energy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lvsehx发布了新的文献求助10
刚刚
枕泉漱石完成签到 ,获得积分10
刚刚
开心的瘦子完成签到,获得积分10
1秒前
云川发布了新的文献求助10
1秒前
1秒前
1秒前
卢荣秀完成签到,获得积分10
4秒前
帽帽完成签到 ,获得积分10
6秒前
6秒前
7秒前
8秒前
nykxo完成签到,获得积分20
8秒前
汉堡包应助wanggongxiu采纳,获得10
9秒前
fillippo99应助77采纳,获得10
11秒前
Hello应助鳗鱼凡波采纳,获得10
11秒前
12秒前
yyy发布了新的文献求助10
13秒前
摆烂废物关注了科研通微信公众号
14秒前
16秒前
PANYS发布了新的文献求助10
17秒前
CodeCraft应助悦宝123456采纳,获得10
19秒前
hanyang965发布了新的文献求助10
19秒前
midrain发布了新的文献求助20
19秒前
24秒前
25秒前
wanggongxiu发布了新的文献求助10
28秒前
摆烂废物发布了新的文献求助10
28秒前
柒柒完成签到,获得积分10
29秒前
欣喜皓轩完成签到 ,获得积分10
30秒前
不安的未来完成签到 ,获得积分10
31秒前
执剑燃此生完成签到,获得积分10
31秒前
难过的小甜瓜完成签到,获得积分10
32秒前
PANYS完成签到,获得积分20
32秒前
王晓雪发布了新的文献求助10
33秒前
33秒前
33秒前
34秒前
Hello应助赤侯采纳,获得10
34秒前
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310354
求助须知:如何正确求助?哪些是违规求助? 2943290
关于积分的说明 8513642
捐赠科研通 2618527
什么是DOI,文献DOI怎么找? 1431125
科研通“疑难数据库(出版商)”最低求助积分说明 664383
邀请新用户注册赠送积分活动 649580