Novel Bayesian Method to Derive Final Adjusted Values of Physicochemical Properties: Application to 74 Compounds

生物信息学 工作流程 贝叶斯概率 计算机科学 一致性(知识库) 水准点(测量) 异方差 数据挖掘 贝叶斯定理 化学 机器学习 人工智能 数据库 生物化学 大地测量学 基因 地理
作者
Timothy F. M. Rodgers,Joseph O. Okeme,J. Mark Parnis,Kyle Girdhari,Terry F. Bidleman,Yuchao Wan,Liisa M. Jantunen,Miriam L. Diamond
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:55 (18): 12302-12316 被引量:17
标识
DOI:10.1021/acs.est.1c01418
摘要

Accurate values of physicochemical properties are essential for screening semivolatile organic compounds for human and environmental hazard and risk. In silico approaches for estimation are widely used, but the accuracy of these and measured values can be difficult to ascertain. Final adjusted values (FAVs) harmonize literature-reported measurements to ensure consistency and minimize uncertainty. We propose a workflow, including a novel Bayesian approach, for estimating FAVs that combines measurements using direct and indirect methods and in silico values. The workflow was applied to 74 compounds across nine classes to generate recommended FAVs (FAVRs). Estimates generated by in silico methods (OPERA, COSMOtherm, EPI Suite, SPARC, and polyparameter linear free energy relationships (pp-LFER) models) differed by orders of magnitude for some properties and compounds and performed systematically worse for larger, more polar compounds. COSMOtherm and OPERA generally performed well with low bias although no single in silico method performed best across all compound classes and properties. Indirect measurement methods produced highly accurate and precise estimates compared with direct measurement methods. Our Bayesian method harmonized measured and in silico estimated physicochemical properties without introducing observable biases. We thus recommend use of the FAVRs presented here and that the proposed Bayesian workflow be used to generate FAVRs for SVOCs beyond those in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陈总002完成签到,获得积分10
1秒前
1秒前
1秒前
小蘑菇应助科研顺利采纳,获得10
2秒前
KKKK发布了新的文献求助10
2秒前
2秒前
小青椒应助zhang采纳,获得20
2秒前
龙之介完成签到,获得积分10
3秒前
斯文败类应助大力的海蓝采纳,获得10
3秒前
3秒前
舒心的寻琴完成签到,获得积分10
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
cicytjsxjr发布了新的文献求助10
5秒前
zero发布了新的文献求助10
5秒前
6秒前
6秒前
零食宝发布了新的文献求助10
6秒前
伊卡洛斯发布了新的文献求助10
6秒前
典雅的羿发布了新的文献求助10
7秒前
李爱国应助Qinghen采纳,获得10
7秒前
7秒前
NexusExplorer应助安安采纳,获得10
7秒前
7秒前
saywhy发布了新的文献求助10
8秒前
共享精神应助乐唔采纳,获得10
8秒前
哭泣朝雪完成签到,获得积分10
8秒前
yiyi完成签到 ,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
mys完成签到,获得积分10
9秒前
241867825发布了新的文献求助10
9秒前
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940451
求助须知:如何正确求助?哪些是违规求助? 4206580
关于积分的说明 13074753
捐赠科研通 3985154
什么是DOI,文献DOI怎么找? 2182031
邀请新用户注册赠送积分活动 1197696
关于科研通互助平台的介绍 1110012