Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning

计算机科学 图形 判别式 理论计算机科学 标记数据 人工智能 机器学习 半监督学习 卷积神经网络 数据挖掘 模式识别(心理学)
作者
Sheng Wan,Shirui Pan,Jian Yang,Chen Gong
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:35 (11): 10049-10057 被引量:104
标识
DOI:10.1609/aaai.v35i11.17206
摘要

Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph. As one of the most popular graph-based SSL approaches, the recently proposed Graph Convolutional Networks (GCNs) have gained remarkable progress by combining the sound expressiveness of neural networks with graph structure. Nevertheless, the existing graph-based methods do not directly address the core problem of SSL, \emph{i.e.}, the shortage of supervision, and thus their performances are still very limited. To accommodate this issue, this paper presents a novel GCN-based SSL algorithm which aims to enrich the supervision signals by utilizing both data similarities and graph structure. Firstly, by designing a semi-supervised contrastive loss, the improved node representations can be generated via maximizing the agreement between different views of the same data or the data from the same class. Therefore, the rich unlabeled data and the scarce yet valuable labeled data can jointly provide abundant supervision information for learning discriminative node representations, which helps improve the subsequent classification result. Secondly, the underlying determinative relationship between the input graph topology and data features is extracted as supplementary supervision signals for SSL via using a graph generative loss related to input features. Intensive experimental results on a variety of real-world datasets firmly verify the effectiveness of our algorithm when compared with other state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助叮叮当采纳,获得10
1秒前
司空元正发布了新的文献求助10
1秒前
过时的画板完成签到,获得积分10
2秒前
风趣冰棍发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
八一驳回了烟花应助
3秒前
Evander发布了新的文献求助10
3秒前
Criminology34应助尊敬帅哥采纳,获得10
3秒前
一树梨花白完成签到,获得积分20
4秒前
4秒前
墨旱莲完成签到,获得积分10
4秒前
BareBear应助zzrg采纳,获得10
4秒前
tangshijun发布了新的文献求助10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
冷艳的灭龙完成签到,获得积分10
4秒前
大个应助科研通管家采纳,获得10
5秒前
Gauss应助科研通管家采纳,获得20
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
Wolfgang发布了新的文献求助10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
5秒前
Hello应助科研通管家采纳,获得10
5秒前
5秒前
情怀应助四夕水窖采纳,获得10
5秒前
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
ziptip完成签到,获得积分10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
happyccch发布了新的文献求助10
5秒前
哈比人linling完成签到,获得积分10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
孤独的无血完成签到,获得积分10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581693
求助须知:如何正确求助?哪些是违规求助? 4665895
关于积分的说明 14759417
捐赠科研通 4607833
什么是DOI,文献DOI怎么找? 2528395
邀请新用户注册赠送积分活动 1497666
关于科研通互助平台的介绍 1466553