Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning

计算机科学 图形 判别式 理论计算机科学 标记数据 人工智能 机器学习 半监督学习 卷积神经网络 数据挖掘 模式识别(心理学)
作者
Sheng Wan,Shirui Pan,Jian Yang,Chen Gong
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:35 (11): 10049-10057 被引量:104
标识
DOI:10.1609/aaai.v35i11.17206
摘要

Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph. As one of the most popular graph-based SSL approaches, the recently proposed Graph Convolutional Networks (GCNs) have gained remarkable progress by combining the sound expressiveness of neural networks with graph structure. Nevertheless, the existing graph-based methods do not directly address the core problem of SSL, \emph{i.e.}, the shortage of supervision, and thus their performances are still very limited. To accommodate this issue, this paper presents a novel GCN-based SSL algorithm which aims to enrich the supervision signals by utilizing both data similarities and graph structure. Firstly, by designing a semi-supervised contrastive loss, the improved node representations can be generated via maximizing the agreement between different views of the same data or the data from the same class. Therefore, the rich unlabeled data and the scarce yet valuable labeled data can jointly provide abundant supervision information for learning discriminative node representations, which helps improve the subsequent classification result. Secondly, the underlying determinative relationship between the input graph topology and data features is extracted as supplementary supervision signals for SSL via using a graph generative loss related to input features. Intensive experimental results on a variety of real-world datasets firmly verify the effectiveness of our algorithm when compared with other state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
饶天源发布了新的文献求助10
1秒前
sy发布了新的文献求助10
1秒前
王乾宇发布了新的文献求助10
1秒前
科研通AI6.1应助ww采纳,获得10
1秒前
OvO发布了新的文献求助10
2秒前
沉静的诗桃完成签到,获得积分20
2秒前
2秒前
自然秋双发布了新的文献求助10
2秒前
Akiyuki完成签到,获得积分10
2秒前
愤怒的似狮完成签到,获得积分20
3秒前
3秒前
dere完成签到,获得积分10
3秒前
小龙发布了新的文献求助10
3秒前
xxg完成签到,获得积分10
4秒前
小匡完成签到 ,获得积分10
4秒前
4秒前
猪猪hero发布了新的文献求助10
4秒前
嘉嘉完成签到 ,获得积分10
4秒前
one发布了新的文献求助10
4秒前
猷鲛发布了新的文献求助10
5秒前
ruogu7发布了新的文献求助10
6秒前
敬老院N号发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
安珊应助务实的鸽子采纳,获得10
7秒前
7秒前
夏日重现完成签到,获得积分10
7秒前
能干蜜蜂完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
asd发布了新的文献求助10
9秒前
SilentStorm完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
9秒前
AN发布了新的文献求助30
10秒前
略略略完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5768619
求助须知:如何正确求助?哪些是违规求助? 5576280
关于积分的说明 15419148
捐赠科研通 4902454
什么是DOI,文献DOI怎么找? 2637767
邀请新用户注册赠送积分活动 1585694
关于科研通互助平台的介绍 1540805