Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning

计算机科学 图形 判别式 理论计算机科学 标记数据 人工智能 机器学习 半监督学习 卷积神经网络 数据挖掘 模式识别(心理学)
作者
Sheng Wan,Shirui Pan,Jian Yang,Chen Gong
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:35 (11): 10049-10057 被引量:104
标识
DOI:10.1609/aaai.v35i11.17206
摘要

Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph. As one of the most popular graph-based SSL approaches, the recently proposed Graph Convolutional Networks (GCNs) have gained remarkable progress by combining the sound expressiveness of neural networks with graph structure. Nevertheless, the existing graph-based methods do not directly address the core problem of SSL, \emph{i.e.}, the shortage of supervision, and thus their performances are still very limited. To accommodate this issue, this paper presents a novel GCN-based SSL algorithm which aims to enrich the supervision signals by utilizing both data similarities and graph structure. Firstly, by designing a semi-supervised contrastive loss, the improved node representations can be generated via maximizing the agreement between different views of the same data or the data from the same class. Therefore, the rich unlabeled data and the scarce yet valuable labeled data can jointly provide abundant supervision information for learning discriminative node representations, which helps improve the subsequent classification result. Secondly, the underlying determinative relationship between the input graph topology and data features is extracted as supplementary supervision signals for SSL via using a graph generative loss related to input features. Intensive experimental results on a variety of real-world datasets firmly verify the effectiveness of our algorithm when compared with other state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
苗条的天问完成签到,获得积分10
1秒前
陈豆豆发布了新的文献求助10
4秒前
6秒前
7秒前
辉哥发布了新的文献求助10
8秒前
汉堡包应助杨小鸿采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
Akim应助陈豆豆采纳,获得10
10秒前
10秒前
11秒前
11秒前
Vincent完成签到,获得积分20
12秒前
FKKKKSY发布了新的文献求助10
14秒前
星星完成签到,获得积分10
16秒前
SAIL完成签到 ,获得积分10
19秒前
19秒前
华仔应助美满的如柏采纳,获得10
20秒前
111完成签到,获得积分10
21秒前
德国克大夫完成签到,获得积分10
22秒前
keyantong完成签到 ,获得积分10
23秒前
淡然安雁完成签到 ,获得积分10
23秒前
大胆易巧完成签到 ,获得积分10
24秒前
24秒前
123完成签到 ,获得积分10
24秒前
我问问完成签到 ,获得积分10
24秒前
25秒前
25秒前
25秒前
迷失岛完成签到,获得积分10
27秒前
28秒前
护心丹发布了新的文献求助10
28秒前
28秒前
FKKKKSY完成签到,获得积分10
29秒前
DreamLover完成签到,获得积分10
29秒前
29秒前
29秒前
zss完成签到 ,获得积分10
29秒前
wanci应助zz桓桓采纳,获得10
30秒前
炙热芝完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978