Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning

计算机科学 图形 判别式 理论计算机科学 标记数据 人工智能 机器学习 半监督学习 卷积神经网络 数据挖掘 模式识别(心理学)
作者
Sheng Wan,Shirui Pan,Jian Yang,Chen Gong
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:35 (11): 10049-10057 被引量:104
标识
DOI:10.1609/aaai.v35i11.17206
摘要

Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph. As one of the most popular graph-based SSL approaches, the recently proposed Graph Convolutional Networks (GCNs) have gained remarkable progress by combining the sound expressiveness of neural networks with graph structure. Nevertheless, the existing graph-based methods do not directly address the core problem of SSL, \emph{i.e.}, the shortage of supervision, and thus their performances are still very limited. To accommodate this issue, this paper presents a novel GCN-based SSL algorithm which aims to enrich the supervision signals by utilizing both data similarities and graph structure. Firstly, by designing a semi-supervised contrastive loss, the improved node representations can be generated via maximizing the agreement between different views of the same data or the data from the same class. Therefore, the rich unlabeled data and the scarce yet valuable labeled data can jointly provide abundant supervision information for learning discriminative node representations, which helps improve the subsequent classification result. Secondly, the underlying determinative relationship between the input graph topology and data features is extracted as supplementary supervision signals for SSL via using a graph generative loss related to input features. Intensive experimental results on a variety of real-world datasets firmly verify the effectiveness of our algorithm when compared with other state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助啊飞啊飞啊飞采纳,获得10
1秒前
2秒前
zjrh发布了新的文献求助10
2秒前
郝富完成签到,获得积分10
3秒前
ericzhouxx完成签到,获得积分10
3秒前
doctor小陈完成签到,获得积分10
4秒前
倩倩发布了新的文献求助10
6秒前
受伤鸡发布了新的文献求助10
7秒前
坚果完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
jesmblaq发布了新的文献求助10
8秒前
AAngelica完成签到,获得积分10
8秒前
ElviraHuang完成签到 ,获得积分10
10秒前
10秒前
李昕123发布了新的文献求助10
12秒前
12秒前
13秒前
Canyon完成签到,获得积分10
14秒前
刘l完成签到,获得积分10
14秒前
9699完成签到,获得积分20
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
破碎时间完成签到 ,获得积分10
16秒前
16秒前
16秒前
orixero应助忐忑的不可采纳,获得10
17秒前
科研通AI2S应助zhouyan采纳,获得10
17秒前
18秒前
蔡勇强发布了新的文献求助10
18秒前
小虫虫完成签到,获得积分10
18秒前
饼饼大王完成签到,获得积分10
18秒前
13013523252完成签到,获得积分10
18秒前
20秒前
hy发布了新的文献求助10
20秒前
科研通AI6应助tph采纳,获得10
21秒前
jesmblaq完成签到,获得积分10
22秒前
文静的夜阑完成签到,获得积分20
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812