Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning

计算机科学 图形 判别式 理论计算机科学 标记数据 人工智能 机器学习 半监督学习 卷积神经网络 数据挖掘 模式识别(心理学)
作者
Sheng Wan,Shirui Pan,Jian Yang,Chen Gong
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:35 (11): 10049-10057 被引量:104
标识
DOI:10.1609/aaai.v35i11.17206
摘要

Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph. As one of the most popular graph-based SSL approaches, the recently proposed Graph Convolutional Networks (GCNs) have gained remarkable progress by combining the sound expressiveness of neural networks with graph structure. Nevertheless, the existing graph-based methods do not directly address the core problem of SSL, \emph{i.e.}, the shortage of supervision, and thus their performances are still very limited. To accommodate this issue, this paper presents a novel GCN-based SSL algorithm which aims to enrich the supervision signals by utilizing both data similarities and graph structure. Firstly, by designing a semi-supervised contrastive loss, the improved node representations can be generated via maximizing the agreement between different views of the same data or the data from the same class. Therefore, the rich unlabeled data and the scarce yet valuable labeled data can jointly provide abundant supervision information for learning discriminative node representations, which helps improve the subsequent classification result. Secondly, the underlying determinative relationship between the input graph topology and data features is extracted as supplementary supervision signals for SSL via using a graph generative loss related to input features. Intensive experimental results on a variety of real-world datasets firmly verify the effectiveness of our algorithm when compared with other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
JasonSun完成签到,获得积分10
1秒前
1秒前
SciGPT应助缓慢易云采纳,获得10
2秒前
xuxu发布了新的文献求助20
2秒前
2秒前
2秒前
侯美琪完成签到 ,获得积分10
2秒前
3秒前
3秒前
苹果发布了新的文献求助10
3秒前
12334发布了新的文献求助10
3秒前
ww发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
大个应助渊_采纳,获得10
4秒前
4秒前
RockRedfoo完成签到 ,获得积分10
4秒前
scvsdz发布了新的文献求助10
5秒前
5秒前
Scidog完成签到,获得积分0
5秒前
谨言完成签到 ,获得积分10
6秒前
飘逸鸵鸟发布了新的文献求助10
6秒前
mobo完成签到,获得积分10
7秒前
减肥为窈窕完成签到,获得积分10
7秒前
烩面大师发布了新的文献求助10
7秒前
文龙发布了新的文献求助10
7秒前
TuT发布了新的文献求助10
7秒前
毛子涵发布了新的文献求助10
8秒前
8秒前
FooLeup立仔完成签到,获得积分10
8秒前
hhhh完成签到,获得积分10
8秒前
nan完成签到,获得积分10
9秒前
jeffyoung发布了新的文献求助10
9秒前
10秒前
赵浩宇发布了新的文献求助10
10秒前
10秒前
周娅敏完成签到,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582