强化学习
避碰
控制器(灌溉)
碰撞
计算机科学
控制理论(社会学)
避障
跟踪(教育)
理论(学习稳定性)
控制工程
障碍物
工程类
人工智能
控制(管理)
移动机器人
机器人
机器学习
政治学
教育学
法学
心理学
生物
计算机安全
农学
作者
Qingrui Zhang,Wei Pan,Vasso Reppa
出处
期刊:IEEE Transactions on Intelligent Transportation Systems
[Institute of Electrical and Electronics Engineers]
日期:2021-06-15
卷期号:23 (7): 8770-8781
被引量:43
标识
DOI:10.1109/tits.2021.3086033
摘要
This paper presents a novel model-reference reinforcement learning algorithm for the intelligent tracking control of uncertain autonomous surface vehicles with collision avoidance. The proposed control algorithm combines a conventional control method with reinforcement learning to enhance control accuracy and intelligence. In the proposed control design, a nominal system is considered for the design of a baseline tracking controller using a conventional control approach. The nominal system also defines the desired behaviour of uncertain autonomous surface vehicles in an obstacle-free environment. Thanks to reinforcement learning, the overall tracking controller is capable of compensating for model uncertainties and achieving collision avoidance at the same time in environments with obstacles. In comparison to traditional deep reinforcement learning methods, our proposed learning-based control can provide stability guarantees and better sample efficiency. We demonstrate the performance of the new algorithm using an example of autonomous surface vehicles.
科研通智能强力驱动
Strongly Powered by AbleSci AI