A cost-effective algorithm for calibrating multiscale geographically weighted regression models

估计员 算法 校准 平滑度 线性回归 边界(拓扑) 数学 核回归 比例(比率) 核(代数) 局部回归 回归 度量(数据仓库) 计算机科学 统计 数据挖掘 多项式回归 地理 数学分析 组合数学 地图学
作者
Bo Wu,Jinbiao Yan,Hui Lin
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:36 (5): 898-917 被引量:14
标识
DOI:10.1080/13658816.2021.1999457
摘要

The multiscale geographically weighted regression (MGWR) model is a useful extension of the geographically weighted regression (GWR) model. MGWR, however, is a kind of Nadaraya–Watson kernel smoother, which usually leads to inaccurate estimates for the regression function and suffers from the boundary effect. Moreover, the widely used calibration technique for the MGWR with a back-fitting estimator (MGWR-BF) is computationally demanding, preventing it from being applied to large-scale data. To overcome these problems, we proposed a local linear-fitting-based MGWR (MGWR-LL) by introducing a local spatially varying coefficient model in which coefficients of different variables could be characterised as linear functions of spatial coordinates with different degrees of smoothness. Then the model was calibrated with a two-step least-squared estimated algorithm. Both simulated and actual data were implemented to validate the performance of the proposed method. The results consistently showed that the MGWR-LL automatically corrected for the boundary effect and improved the accuracy in most cases, not only in the goodness-of-fit measure but also in reducing the bias of the coefficient estimates. Moreover, the MGWR-LL significantly outperformed the MGWR-BF in computational cost, especially for larger-scale data. These results demonstrated that the proposed method can be a useful tool for the MGWR calibration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YanZ830发布了新的文献求助10
刚刚
crystal发布了新的文献求助10
刚刚
刚刚
TT完成签到,获得积分10
1秒前
1秒前
沉默的觅海完成签到,获得积分10
1秒前
2秒前
赘婿应助伦纳德采纳,获得30
2秒前
Yang完成签到,获得积分10
2秒前
ranj发布了新的文献求助10
2秒前
单纯胡萝卜完成签到,获得积分10
2秒前
义气若冰完成签到,获得积分10
2秒前
研友_VZG7GZ应助huizi采纳,获得10
3秒前
3秒前
pluto应助淬h采纳,获得10
4秒前
香蕉觅云应助淬h采纳,获得10
4秒前
yimi完成签到,获得积分10
4秒前
an发布了新的文献求助10
4秒前
4秒前
机智的寻真完成签到,获得积分20
5秒前
5秒前
5秒前
5秒前
UP完成签到,获得积分10
5秒前
123456完成签到,获得积分20
6秒前
7秒前
7秒前
猪猪hero发布了新的文献求助10
7秒前
马蹄发布了新的文献求助10
8秒前
8秒前
Giinjju发布了新的文献求助10
8秒前
8秒前
惊执虫儿发布了新的文献求助10
8秒前
CipherSage应助张冰倩采纳,获得10
9秒前
YanZ830完成签到,获得积分10
10秒前
10秒前
SYLH应助称心的菲鹰采纳,获得10
11秒前
坤123完成签到,获得积分20
11秒前
11秒前
theScorpions完成签到 ,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970394
求助须知:如何正确求助?哪些是违规求助? 3515139
关于积分的说明 11177107
捐赠科研通 3250335
什么是DOI,文献DOI怎么找? 1795254
邀请新用户注册赠送积分活动 875732
科研通“疑难数据库(出版商)”最低求助积分说明 805054