Local delivery and controlled release of miR-34a loaded in hydroxyapatite/mesoporous organosilica nanoparticles composite-coated implant wire to accelerate bone fracture healing

骨愈合 材料科学 涂层 骨折 生物医学工程 复合数 纳米技术 复合材料 医学 外科 放射科
作者
Xiang Guo,Mintao Xue,Fei Chen,Qunfeng Guo,Xin Zhou,Han Lin,Yu Chen
出处
期刊:Biomaterials [Elsevier]
卷期号:280: 121300-121300 被引量:18
标识
DOI:10.1016/j.biomaterials.2021.121300
摘要

Immediate mechanical stability is a prerequisite for fracture healing. In addition to bringing immediate mechanical stability in fracture site, implants with bioactive coating can release active substance to accelerate bone-fracture healing. However, limited drug-loading capacity of established coatings weakens their biological functions, which urges the engineering of more effective coating biomaterials for accelerating fracture healing. Herein, mesoporous organosilica nanoparticles (MONs), as miR-34a delivers, are loaded onto hydroxyapatite (HA)-coated Kirschner wire to engineer a HA/MONs@miR-34a composite coating. The composite coating can effectively deliver miR-34a into osteoclasts, generate gene dose-dependent inhibiting effect on differentiation and resorptive activity of osteoclasts by regulating multiple downstream gene expression at the early stage of fracture healing, which additionally exhibits decent bone regeneration potentials as evidenced in rat tibial fracture model. In particular, differentially expressed genes regulated by miR-34a are identified using RNA-seq followed by bioinformatics analysis. Functional enrichment analysis reveals that genes with altered expression mainly distribute in mainly distribute in DNA replication and cell cycle, which are associated with the development of osteoclasts. This work not only demonstrates the high clinical translation potential of HA/MONs@miR-34a to accelerate fracture healing, but also reveals the underlying molecular mechanism of regulating physiological functions of osteoclasts based on analysis of singlecell RNA sequencing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆豆应助huco采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
qin希望应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
8R60d8应助科研通管家采纳,获得10
2秒前
shilong.yang完成签到,获得积分10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
大模型应助科研通管家采纳,获得10
3秒前
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
8R60d8应助科研通管家采纳,获得10
3秒前
梦潇遥完成签到,获得积分10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
8R60d8应助科研通管家采纳,获得20
3秒前
rossliyi应助科研通管家采纳,获得10
3秒前
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
4秒前
梦潇遥发布了新的文献求助10
5秒前
伊小美发布了新的文献求助30
6秒前
67完成签到,获得积分10
7秒前
风中的嚓茶完成签到,获得积分10
8秒前
懵懂发布了新的文献求助10
8秒前
8秒前
Lucas应助Phoebe采纳,获得10
11秒前
liuqiease发布了新的文献求助10
12秒前
田様应助sdsd采纳,获得10
14秒前
黑胡椒完成签到 ,获得积分10
15秒前
等待彩虹完成签到,获得积分10
15秒前
xxx完成签到,获得积分10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135055
求助须知:如何正确求助?哪些是违规求助? 2786055
关于积分的说明 7774839
捐赠科研通 2441865
什么是DOI,文献DOI怎么找? 1298217
科研通“疑难数据库(出版商)”最低求助积分说明 625108
版权声明 600825