A multi-factor integrated model for carbon price forecasting: Market interaction promoting carbon emission reduction

碳价格 计量经济学 经济 水准点(测量) 索引(排版) 霍德里克-普雷斯科特过滤器 期货合约 碳纤维 计算机科学 温室气体 金融经济学 宏观经济学 算法 生态学 大地测量学 万维网 复合数 商业周期 生物 地理
作者
Lu‐Tao Zhao,Jing Miao,Shen Qu,Xue-Hui Chen
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:796: 149110-149110 被引量:72
标识
DOI:10.1016/j.scitotenv.2021.149110
摘要

Reasonable carbon price can effectively promote the low-carbon transformation of economy. The future carbon price has an important guiding significance for enterprises and the country. However, the nonlinear and high noise characteristics inherent in carbon price make them challenging to predict accurately. A hybrid decomposition and integration prediction model is proposed using the Hodrick-Prescott filter, an improved grey model and an extreme learning machine to solve this problem. First, a large number of factors that influence carbon price are collected by meta-analysis. The final input is selected through a two-stage feature selection process. Second, the HP filter is used to decompose the input into long-term trends and short-term fluctuations predicted by the improved GM and ELM, respectively. Finally, the two prediction sequences are compared to obtain the final result. European Union Allowances futures price data are applied for empirical analysis. The results show that the prediction performance of this model is better than the other 10 benchmark models, the T-bill, Stoxx50, S&P clean energy index and Brent oil price in the financial and energy markets are helpful in the carbon price's prediction. T-bill affects carbon price frequently, Stoxx50 has a negative correlation with the carbon price in the influence period. Under normal circumstances, the S&P clean energy index is positively correlated with the carbon price. However, when the economic situation is depressed, resulting in a short-term negative correlation between them. In general, carbon market is significantly affected by cross spill over between different markets. The method not only improves the accuracy of carbon price forecast, but also the application of the improved GM explains the reasons for the change of carbon price, which is helpful to promote the realization of carbon neutralization by market-oriented means.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助达克赛德采纳,获得10
1秒前
兴奋的小虾米完成签到,获得积分10
1秒前
1秒前
爆米花应助Alioth采纳,获得10
2秒前
兮兮完成签到,获得积分10
2秒前
ljx完成签到 ,获得积分10
4秒前
4秒前
5秒前
科研通AI2S应助sakura采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
不吃香菜发布了新的文献求助100
6秒前
小药童完成签到 ,获得积分10
7秒前
山丘完成签到,获得积分10
7秒前
8秒前
8秒前
skywalker发布了新的文献求助10
9秒前
骑个柯基完成签到,获得积分10
10秒前
yyfdqms完成签到,获得积分10
11秒前
meat12应助hhh采纳,获得10
12秒前
12秒前
13秒前
14秒前
fujiaxing完成签到,获得积分10
16秒前
田一完成签到,获得积分10
16秒前
16秒前
18秒前
时召展发布了新的文献求助10
19秒前
不吃香菜完成签到,获得积分10
19秒前
桐桐应助mary采纳,获得10
21秒前
上官若男应助gggggd采纳,获得10
22秒前
覃雅丽发布了新的文献求助10
22秒前
dongdadada完成签到,获得积分10
22秒前
Andrea完成签到,获得积分10
23秒前
23秒前
23秒前
清秀的靖雁应助木木采纳,获得50
24秒前
充电宝应助wd采纳,获得30
25秒前
25秒前
Dr大壮发布了新的文献求助10
25秒前
阔达磬发布了新的文献求助10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956172
求助须知:如何正确求助?哪些是违规求助? 3502400
关于积分的说明 11107420
捐赠科研通 3232954
什么是DOI,文献DOI怎么找? 1787093
邀请新用户注册赠送积分活动 870482
科研通“疑难数据库(出版商)”最低求助积分说明 802019