Intelligent prescription-generating models of traditional chinese medicine based on deep learning

计算机科学 人工智能 自然语言处理 变压器 F1得分 召回 文字嵌入 深度学习 中医药 精确性和召回率 机器学习 情报检索 嵌入 医学 心理学 物理 病理 电压 认知心理学 量子力学 替代医学
作者
Qingyang Shi,Lizi Tan,Lim Lian Seng,Huijun Wang
出处
期刊:World journal of traditional Chinese medicine [Medknow]
卷期号:7 (3): 361-369 被引量:11
标识
DOI:10.4103/wjtcm.wjtcm_54_21
摘要

Objective: This study aimed to construct an intelligent prescription-generating (IPG) model based on deep-learning natural language processing (NLP) technology for multiple prescriptions in Chinese medicine. Materials and Methods: We selected the Treatise on Febrile Diseases and the Synopsis of Golden Chamber as basic datasets with EDA data augmentation, and the Yellow Emperor's Canon of Internal Medicine, the Classic of the Miraculous Pivot, and the Classic on Medical Problems as supplementary datasets for fine-tuning. We selected the word-embedding model based on the Imperial Collection of Four, the bidirectional encoder representations from transformers (BERT) model based on the Chinese Wikipedia, and the robustly optimized BERT approach (RoBERTa) model based on the Chinese Wikipedia and a general database. In addition, the BERT model was fine-tuned using the supplementary datasets to generate a Traditional Chinese Medicine-BERT model. Multiple IPG models were constructed based on the pretraining strategy and experiments were performed. Metrics of precision, recall, and F1-score were used to assess the model performance. Based on the trained models, we extracted and visualized the semantic features of some typical texts from treatise on febrile diseases and investigated the patterns. Results: Among all the trained models, the RoBERTa-large model performed the best, with a test set precision of 92.22%, recall of 86.71%, and F1-score of 89.38% and 10-fold cross-validation precision of 94.5% ± 2.5%, recall of 90.47% ± 4.1%, and F1-score of 92.38% ± 2.8%. The semantic feature extraction results based on this model showed that the model was intelligently stratified based on different meanings such that the within-layer's patterns showed the associations of symptom–symptoms, disease–symptoms, and symptom–punctuations, while the between-layer's patterns showed a progressive or dynamic symptom and disease transformation. Conclusions: Deep-learning-based NLP technology significantly improves the performance of IPG model. In addition, NLP-based semantic feature extraction may be vital to further investigate the ancient Chinese medicine texts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wlscj应助静静呀采纳,获得20
刚刚
zzr发布了新的文献求助10
2秒前
4秒前
4秒前
thea完成签到,获得积分10
8秒前
叙余发布了新的文献求助10
9秒前
9秒前
欢乐完成签到,获得积分10
10秒前
知性的猎豹完成签到,获得积分10
10秒前
852应助hou采纳,获得10
12秒前
一块小饼干完成签到,获得积分10
15秒前
17秒前
18秒前
18秒前
科研通AI6应助牛牛采纳,获得10
19秒前
20秒前
20秒前
CGFHEMAN完成签到 ,获得积分10
20秒前
gaojun发布了新的文献求助10
22秒前
TiAmo发布了新的文献求助10
23秒前
23秒前
roger完成签到,获得积分10
24秒前
25秒前
tRNA完成签到 ,获得积分10
26秒前
可爱的函函应助郗栗采纳,获得10
26秒前
26秒前
28秒前
29秒前
moon给moon的求助进行了留言
29秒前
天蔚蓝发布了新的文献求助10
29秒前
跳跃幻竹完成签到 ,获得积分10
30秒前
yiyi发布了新的文献求助10
33秒前
科研通AI6应助Celia采纳,获得10
34秒前
Yi发布了新的文献求助20
35秒前
35秒前
36秒前
MT完成签到,获得积分10
36秒前
所所应助希淇采纳,获得10
37秒前
Suntiger完成签到,获得积分10
39秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373831
求助须知:如何正确求助?哪些是违规求助? 4499875
关于积分的说明 14007415
捐赠科研通 4406786
什么是DOI,文献DOI怎么找? 2420717
邀请新用户注册赠送积分活动 1413451
关于科研通互助平台的介绍 1390059