Intelligent prescription-generating models of traditional chinese medicine based on deep learning

计算机科学 人工智能 自然语言处理 变压器 F1得分 召回 文字嵌入 深度学习 中医药 精确性和召回率 机器学习 情报检索 嵌入 医学 心理学 物理 病理 电压 认知心理学 量子力学 替代医学
作者
Qingyang Shi,Lizi Tan,Lim Lian Seng,Huijun Wang
出处
期刊:World journal of traditional Chinese medicine [Medknow Publications]
卷期号:7 (3): 361-361 被引量:7
标识
DOI:10.4103/wjtcm.wjtcm_54_21
摘要


Objective: This study aimed to construct an intelligent prescription-generating (IPG) model based on deep-learning natural language processing (NLP) technology for multiple prescriptions in Chinese medicine. Materials and Methods: We selected the Treatise on Febrile Diseases and the Synopsis of Golden Chamber as basic datasets with EDA data augmentation, and the Yellow Emperor's Canon of Internal Medicine, the Classic of the Miraculous Pivot, and the Classic on Medical Problems as supplementary datasets for fine-tuning. We selected the word-embedding model based on the Imperial Collection of Four, the bidirectional encoder representations from transformers (BERT) model based on the Chinese Wikipedia, and the robustly optimized BERT approach (RoBERTa) model based on the Chinese Wikipedia and a general database. In addition, the BERT model was fine-tuned using the supplementary datasets to generate a Traditional Chinese Medicine-BERT model. Multiple IPG models were constructed based on the pretraining strategy and experiments were performed. Metrics of precision, recall, and F1-score were used to assess the model performance. Based on the trained models, we extracted and visualized the semantic features of some typical texts from treatise on febrile diseases and investigated the patterns. Results: Among all the trained models, the RoBERTa-large model performed the best, with a test set precision of 92.22%, recall of 86.71%, and F1-score of 89.38% and 10-fold cross-validation precision of 94.5% ± 2.5%, recall of 90.47% ± 4.1%, and F1-score of 92.38% ± 2.8%. The semantic feature extraction results based on this model showed that the model was intelligently stratified based on different meanings such that the within-layer's patterns showed the associations of symptom–symptoms, disease–symptoms, and symptom–punctuations, while the between-layer's patterns showed a progressive or dynamic symptom and disease transformation. Conclusions: Deep-learning-based NLP technology significantly improves the performance of IPG model. In addition, NLP-based semantic feature extraction may be vital to further investigate the ancient Chinese medicine texts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞快的金鑫应助朴素念波采纳,获得10
1秒前
2秒前
旧城关注了科研通微信公众号
3秒前
3秒前
iwersonshmtu发布了新的文献求助10
3秒前
4秒前
我是萨比发布了新的文献求助10
4秒前
hhhyyyy发布了新的文献求助10
6秒前
7秒前
7秒前
人来人往发布了新的文献求助10
7秒前
烟花应助VVV采纳,获得10
10秒前
华子的五A替身完成签到,获得积分10
11秒前
要努力变强完成签到,获得积分10
11秒前
FANGQUAN发布了新的文献求助10
11秒前
兴奋的香芦完成签到,获得积分10
11秒前
希望天下0贩的0应助旧城采纳,获得10
12秒前
科目三应助一名书生采纳,获得10
14秒前
理想三寻发布了新的文献求助10
14秒前
meng完成签到,获得积分10
14秒前
科研通AI2S应助iwersonshmtu采纳,获得10
15秒前
Luhan完成签到,获得积分10
15秒前
15秒前
hhm完成签到,获得积分10
15秒前
西红柿炒番茄应助慕容松采纳,获得10
15秒前
乐乐应助人来人往采纳,获得10
17秒前
17秒前
daniel完成签到,获得积分10
18秒前
18秒前
19秒前
晶莹雪2943完成签到,获得积分10
20秒前
呆二草完成签到,获得积分10
20秒前
20秒前
22秒前
23秒前
晶莹雪2943发布了新的文献求助10
23秒前
24秒前
情怀应助123采纳,获得10
24秒前
iwersonshmtu完成签到,获得积分10
26秒前
26秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159900
求助须知:如何正确求助?哪些是违规求助? 2810945
关于积分的说明 7889920
捐赠科研通 2469918
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630768
版权声明 602012