High-Axial-Aspect Tannic Acid Microparticles Facilitate Gelation and Injectability of Collagen-Based Hydrogels

自愈水凝胶 单宁酸 动态力学分析 流变学 组织工程 化学工程 弹性模量 化学 材料科学 生物物理学 聚合物 高分子化学 生物医学工程 复合材料 有机化学 工程类 生物 医学
作者
Prottasha Sarker,Danielle M. Nalband,Donald O. Freytes,Orlando J. Rojas,Saad A. Khan
出处
期刊:Biomacromolecules [American Chemical Society]
卷期号:23 (11): 4696-4708 被引量:11
标识
DOI:10.1021/acs.biomac.2c00916
摘要

Injectable collagen-based hydrogels offer great promise for tissue engineering and regeneration, but their use is limited by poor mechanical strength. Herein, we incorporate tannic acid (TA) to tailor the rheology of the corresponding hydrogels while simultaneously adding the therapeutic benefits inherent to this polyphenolic component. TA in the solution form and needle-shaped TA microparticles are combined with collagen and the respective systems studied for their time-dependent sol–gel transitions (from storage to body temperatures, 4–37 °C) as a function of TA concentration. Compared to systems incorporating TA microparticles, those with dissolved TA, applied at a similar concentration, generate a less significant enhancement of the elastic modulus. Premature gelation at a low temperature and associated colloidal arrest of the system are proposed as a main factor explaining this limited performance. A higher yield stress (elastic stress method) is determined for systems loaded with TA microparticles compared to the system with dissolved TA. These results are interpreted in terms of the underlying interactions of TA with collagen, as probed by spectroscopy and isothermal titration calorimetry. Importantly, hydrogels containing TA microparticles show high cell viability (human dermal fibroblasts) and comparative cellular activity relative to the collagen-only hydrogel. Overall, composite hydrogels incorporating TA microparticles demonstrate a new, simple, and better-performance alternative to cell culturing and difficult implantation scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
枳甜完成签到,获得积分20
1秒前
愉快白猫完成签到 ,获得积分10
1秒前
紫金之恋发布了新的文献求助10
2秒前
章如豹发布了新的文献求助10
3秒前
suy发布了新的文献求助30
3秒前
LMosn完成签到,获得积分10
4秒前
Jasper应助xxxd采纳,获得10
4秒前
调研昵称发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
飘逸幻竹发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
Ning发布了新的文献求助20
7秒前
Miles发布了新的文献求助10
7秒前
李航完成签到,获得积分10
7秒前
白宝宝北北白应助Nauyt采纳,获得20
8秒前
LMosn发布了新的文献求助10
9秒前
11秒前
黑暗系发布了新的文献求助10
12秒前
胖胖应助QinQin采纳,获得200
13秒前
suy完成签到,获得积分10
13秒前
13秒前
希望天下0贩的0应助EnoshH采纳,获得10
13秒前
14秒前
14秒前
mascot0111完成签到,获得积分10
15秒前
15秒前
充电宝应助JuJu采纳,获得10
17秒前
18秒前
谦让初南发布了新的文献求助10
18秒前
Ning完成签到,获得积分10
18秒前
朵朵科研小能手完成签到,获得积分10
19秒前
slx完成签到,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543397
求助须知:如何正确求助?哪些是违规求助? 3120781
关于积分的说明 9344128
捐赠科研通 2818826
什么是DOI,文献DOI怎么找? 1549809
邀请新用户注册赠送积分活动 722257
科研通“疑难数据库(出版商)”最低求助积分说明 713101