Multiobjective-Based Constraint-Handling Technique for Evolutionary Constrained Multiobjective Optimization: A New Perspective

分类 多目标优化 数学优化 进化算法 水准点(测量) 约束(计算机辅助设计) 计算机科学 约束优化 帕累托原理 人口 数学 算法 社会学 人口学 大地测量学 地理 几何学
作者
Zhizhong Liu,Yunchuan Qin,Wu Song,Jinyuan Zhang,Kenli Li
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (5): 1370-1384 被引量:21
标识
DOI:10.1109/tevc.2022.3194729
摘要

Multiobjective-based constraint-handling techniques are popular in evolutionary constrained single-objective optimization. However, most of these techniques run into troubles when dealing with constrained multiobjective optimization problems (CMOPs). That is, they have difficulty optimizing too many objective functions, are ineffective in maintaining population diversity, or are challenged in establishing appropriate additional objective functions. As a remedy to these limitations, we propose a novel technique called NRC for handling CMOPs. The novelty of NRC lies in its three sorting procedures: 1) nondominated sorting; 2) reversed nondominated sorting; and 3) constrained crowding distance sorting, which are performed in sequence to provide driving forces toward the Pareto front (PF) of a transformed unconstrained multiobjective optimization problem (treating the overall constraint violation as an additional objective function), the boundary front, and the constrained PF, respectively. With the combination of these three different forces, NRC can conveniently approach the desired PF from diverse search directions. The effectiveness of NRC is experimentally verified. Also, we incorporate NRC into a two-archive mechanism and develop a novel constrained multiobjective evolutionary algorithm, called NRC2. Comprehensive experiments on 49 benchmark CMOPs and 21 real-world ones demonstrate that NRC2 is significantly superior or comparable to six state-of-the-art constrained evolutionary multiobjective optimizers on most test instances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
裴帅龙发布了新的文献求助10
1秒前
1秒前
1秒前
稳重幻珊发布了新的文献求助10
2秒前
汉堡包应助直率雨柏采纳,获得10
2秒前
鹏程万里完成签到,获得积分20
2秒前
英姑应助HANK2024采纳,获得10
2秒前
喜悦飞鸟完成签到,获得积分10
2秒前
YamDaamCaa应助LI_Yay采纳,获得30
3秒前
再见吧旅行者关注了科研通微信公众号
3秒前
欢喜念双发布了新的文献求助10
3秒前
sensen完成签到,获得积分10
4秒前
香蕉觅云应助Catherine_Song采纳,获得10
4秒前
在水一方应助选民很头疼采纳,获得10
5秒前
5秒前
在水一方应助幸运在我采纳,获得10
5秒前
5秒前
湫白白完成签到 ,获得积分10
6秒前
dongdong发布了新的文献求助10
6秒前
科研通AI5应助万里长城采纳,获得10
7秒前
丘比特应助Yy采纳,获得10
7秒前
桐桐应助疯狂的星月采纳,获得10
8秒前
577610822发布了新的文献求助10
8秒前
所所应助Light采纳,获得10
8秒前
共享精神应助sensen采纳,获得10
8秒前
湫白白发布了新的文献求助10
8秒前
9秒前
9秒前
冷静海完成签到,获得积分10
9秒前
完美世界应助江水采纳,获得10
9秒前
10秒前
阳光怀亦发布了新的文献求助10
11秒前
小二郎应助糖堆儿爱吃糖采纳,获得10
11秒前
12秒前
Alex完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
稳重幻珊关注了科研通微信公众号
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971277
求助须知:如何正确求助?哪些是违规求助? 3515939
关于积分的说明 11180280
捐赠科研通 3251061
什么是DOI,文献DOI怎么找? 1795664
邀请新用户注册赠送积分活动 875937
科研通“疑难数据库(出版商)”最低求助积分说明 805209