A Novel Detection Method for Pavement Crack with Encoder-Decoder Architecture

计算机科学 卷积神经网络 深度学习 编码器 间断(语言学) 人工智能 特征(语言学) 卷积(计算机科学) 像素 残余物 人工神经网络 算法 数学 哲学 数学分析 操作系统 语言学
作者
Yalong Yang,Wenjing Xu,Yinfeng Zhu,Liangliang Su,Gongquan Zhang
出处
期刊:Cmes-computer Modeling in Engineering & Sciences [Computers, Materials and Continua (Tech Science Press)]
卷期号:137 (1): 761-773 被引量:2
标识
DOI:10.32604/cmes.2023.027010
摘要

As a current popular method, intelligent detection of cracks is of great significance to road safety, so deep learning has gradually attracted attention in the field of crack image detection. The nonlinear structure, low contrast and discontinuity of cracks bring great challenges to existing crack detection methods based on deep learning. Therefore, an end-to-end deep convolutional neural network (AttentionCrack) is proposed for automatic crack detection to overcome the inaccuracy of boundary location between crack and non-crack pixels. The AttentionCrack network is built on U-Net based encoder-decoder architecture, and an attention mechanism is incorporated into the multi-scale convolutional feature to enhance the recognition of crack region. Additionally, a dilated convolution module is introduced in the encoder-decoder architecture to reduce the loss of crack detail due to the pooling operation in the encoder network. Furthermore, since up-sampling will lead to the loss of crack boundary information in the decoder network, a depthwise separable residual module is proposed to capture the boundary information of pavement crack. The AttentionCrack net on public pavement crack image datasets named CrackSegNet and Crack500 is trained and tested, the results demonstrate that the AttentionCrack achieves F1 score over 0.70 on the CrackSegNet and 0.71 on the Crack500 in average and outperforms the current state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助kiki采纳,获得10
1秒前
2秒前
XN发布了新的文献求助10
2秒前
2秒前
2秒前
愉快的藏今完成签到,获得积分10
2秒前
HXU发布了新的文献求助10
3秒前
赘婿应助安详世平采纳,获得10
3秒前
田様应助姜小黑黑黑采纳,获得30
3秒前
Criminology34应助dy125614采纳,获得10
3秒前
充电宝应助花痴的文涛采纳,获得10
4秒前
田心发布了新的文献求助10
4秒前
4秒前
小强123发布了新的文献求助30
4秒前
AaronL完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
浮游应助Limerence采纳,获得10
6秒前
林佳一完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
BBy_Smile完成签到,获得积分10
6秒前
6秒前
lilili应助xueshu采纳,获得10
6秒前
DMPK发布了新的文献求助30
6秒前
6秒前
yangjinru完成签到 ,获得积分10
7秒前
jinzhen发布了新的文献求助10
7秒前
vtfangfangfang完成签到,获得积分10
8秒前
9秒前
科研通AI2S应助堡主采纳,获得10
10秒前
orixero应助yankeke采纳,获得10
10秒前
唉呦嘿完成签到,获得积分10
10秒前
愉快发带完成签到,获得积分20
10秒前
10秒前
安详世平完成签到,获得积分10
10秒前
10秒前
11秒前
Hey完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618980
求助须知:如何正确求助?哪些是违规求助? 4703923
关于积分的说明 14924415
捐赠科研通 4758994
什么是DOI,文献DOI怎么找? 2550336
邀请新用户注册赠送积分活动 1513125
关于科研通互助平台的介绍 1474401